Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 19(9): 2068-2074, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227537

RESUMEN

JOURNAL/nrgr/04.03/01300535-202409000-00040/figure1/v/2024-01-16T170235Z/r/image-tiff Plaques of amyloid-ß (Aß) and neurofibrillary tangles are the main pathological characteristics of Alzheimer's disease (AD). However, some older adult people with AD pathological hallmarks can retain cognitive function. Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets. Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels, which may underlie healthy cognitive performance in aged AD animals. Utilizing the Morris Water Maze test, we selected resilient (asymptomatic) and cognitively impaired aged Tg2576 mice. While the enzyme-linked immunosorbent assay showed similar levels of Aß42 in both experimental groups, western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction. To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice, we employed stereological and electron microscopic methods. Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls. Intriguingly, through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice, we uncovered differences in the subcellular localization of glutamate receptors. Specifically, the density of GluA1, GluA2/3, and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls. Notably, the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice. These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.

2.
Front Immunol ; 14: 1130044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187754

RESUMEN

A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer's Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1ß and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1ß mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Mentol/uso terapéutico , Precursor de Proteína beta-Amiloide/genética , Linfocitos T Reguladores , Ratones Transgénicos , Cognición , Inmunidad
3.
Pharmaceutics ; 15(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36678710

RESUMEN

Docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the brain, is essential for successful aging. In fact, epidemiological studies have demonstrated that increased intake of DHA might lower the risk for developing Alzheimer's disease (AD). These observations are supported by studies in animal models showing that DHA reduces synaptic pathology and memory deficits. Different mechanisms to explain these beneficial effects have been proposed; however, the molecular pathways involved are still unknown. In this study, to unravel the main underlying molecular mechanisms activated upon DHA treatment, the effect of a high dose of DHA on cognitive function and AD pathology was analyzed in aged Tg2576 mice and their wild-type littermates. Transcriptomic analysis of mice hippocampi using RNA sequencing was subsequently performed. Our results revealed that, through an amyloid-independent mechanism, DHA enhanced memory function and increased synapse formation only in the Tg2576 mice. Likewise, the IPA analysis demonstrated that essential neuronal functions related to synaptogenesis, neuritogenesis, the branching of neurites, the density of dendritic spines and the outgrowth of axons were upregulated upon-DHA treatment in Tg2576 mice. Our results suggest that memory function in APP mice is influenced by DHA intake; therefore, a high dose of daily DHA should be tested as a dietary supplement for AD dementia prevention.

4.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34769380

RESUMEN

Despite the well-accepted role of the two main neuropathological markers (ß-amyloid and tau) in the progression of Alzheimer's disease, the interaction and specific contribution of each of them is not fully elucidated. To address this question, in the present study, an adeno-associated virus (AAV9) carrying the mutant P301L form of human tau, was injected into the dorsal hippocampi of APP/PS1 transgenic mice or wild type mice (WT). Three months after injections, memory tasks, biochemical and immunohistochemical analysis were performed. We found that the overexpression of hTauP301L accelerates memory deficits in APP/PS1 mice, but it did not affect memory function of WT mice. Likewise, biochemical assays showed that only in the case of APP/PS1-hTauP301L injected mice, an important accumulation of tau was observed in the insoluble urea fraction. Similarly, electron microscopy images revealed that numerous clusters of tau immunoparticles appear at the dendrites of APP/PS1 injected mice and not in WT animals, suggesting that the presence of amyloid is necessary to induce tau aggregation. Interestingly, these tau immunoparticles accumulate in dendritic mitochondria in the APP/PS1 mice, whereas most of mitochondria in WT injected mice remain free of tau immunoparticles. Taken together, it seems that amyloid induces tau aggregation and accumulation in the dendritic mitochondria and subsequently may alter synapse function, thus, contributing to accelerate cognitive decline in APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/efectos adversos , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Mitocondrias/patología , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Animales , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Fosforilación , Presenilina-1/fisiología , Sinapsis , Proteínas tau/genética
5.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502030

RESUMEN

Understanding the mechanisms involved in cognitive resilience in Alzheimer's disease (AD) represents a promising strategy to identify novel treatments for dementia in AD. Previous findings from our group revealed that the study of aged-Tg2576 cognitive resilient individuals is a suitable tool for this purpose. In the present study, we performed a transcriptomic analysis using the prefrontal cortex of demented and resilient Tg2576 transgenic AD mice. We have been able to hypothesize that pathways involved in inflammation, amyloid degradation, memory function, and neurotransmission may be playing a role on cognitive resilience in AD. Intriguingly, the results obtained in this study are suggestive of a reduction of the influx of peripheral immune cells into the brain on cognitive resilient subjects. Indeed, CD4 mRNA expression is significantly reduced on Tg2576 mice with cognitive resilience. For further validation of this result, we analyzed CD4 expression in human AD samples, including temporal cortex and peripheral blood mononuclear cells (PBMC). Interestingly, we have found a negative correlation between CD4 mRNA levels in the periphery and the score in the Mini-Mental State Exam of AD patients. These findings highlight the importance of understanding the role of the immune system on the development of neurodegenerative diseases and points out to the infiltration of CD4+ cells in the brain as a key player of cognitive dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Antígenos CD4/genética , Corteza Cerebral/metabolismo , Cognición , Inflamación , Leucocitos Mononucleares/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/fisiopatología , Animales , Corteza Cerebral/fisiología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Corteza Prefrontal/metabolismo , Lóbulo Temporal/metabolismo
6.
Prog Neurobiol ; 191: 101818, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380223

RESUMEN

Clinical studies revealed that some aged-individuals accumulate a significant number of histopathological Alzheimer´s disease (AD) lesions in their brain, yet without developing any signs of dementia. Animal models of AD represent suitable tools to identify genes that might promote cognitive resilience and hence, this study first set out to identify cognitively resilient individuals in the aged-Tg2576 mouse model. A transcriptomic analysis of these mice identified PLA2G4E as a gene that might confer resistance to dementia. Indeed, a significant decrease in PLA2G4E is evident in the brain of late-stage AD patients, whereas no such changes are observed in early stage patients with AD neuropathological lesions but no signs of dementia. We demonstrated that adeno-associated viral vector-mediated overexpression of PLA2G4E in hippocampal neurons completely restored cognitive deficits in elderly APP/PS1 mice, without affecting the amyloid or tau pathology. These PLA2G4E overexpressing APP/PS1 mice developed significantly more dendritic spines than sham-injected mice, coinciding with the cognitive improvement observed. Hence, these results support the idea that a loss of PLA2G4E might play a key role in the onset of dementia in AD, highlighting the potential of PLA2G4E overexpression as a novel therapeutic strategy to manage AD and other disorders that course with memory deficits.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Espinas Dendríticas , Terapia Genética , Fosfolipasas A2 Grupo IV/fisiología , Fosfolipasas A2 Grupo IV/uso terapéutico , Hipocampo , Memoria Espacial , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
ACS Chem Neurosci ; 10(9): 4076-4101, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31441641

RESUMEN

Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Enfermedad de Alzheimer/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/metabolismo , Acetilación , Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Estructura Molecular , Hidrolasas Diéster Fosfóricas/metabolismo , Relación Estructura-Actividad
8.
Front Aging Neurosci ; 11: 149, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281249

RESUMEN

The discouraging results with therapies for Alzheimer's disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain Aß, although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.

9.
Mol Ther Nucleic Acids ; 16: 26-37, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30825670

RESUMEN

A hexanucleotide GGGGCC expansion in intron 1 of chromosome 9 open reading frame 72 (C9orf72) gene is the most frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The corresponding repeat-containing sense and antisense transcripts cause a gain of toxicity through the accumulation of RNA foci in the nucleus and deposition of dipeptide-repeat (DPR) proteins in the cytoplasm of the affected cells. We have previously reported on the potential of engineered artificial anti-C9orf72-targeting miRNAs (miC) targeting C9orf72 to reduce the gain of toxicity caused by the repeat-containing transcripts. In the current study, we tested the silencing efficacy of adeno-associated virus (AAV)5-miC in human-derived induced pluripotent stem cell (iPSC) neurons and in an ALS mouse model. We demonstrated that AAV5-miC transduces different types of neuronal cells and can reduce the accumulation of repeat-containing C9orf72 transcripts. Additionally, we demonstrated silencing of C9orf72 in both the nucleus and cytoplasm, which has an added value for the treatment of ALS and/or FTD patients. A proof of concept in an ALS mouse model demonstrated the significant reduction in repeat-containing C9orf72 transcripts and RNA foci after treatment. Taken together, these findings support the feasibility of a gene therapy for ALS and FTD based on the reduction in toxicity caused by the repeat-containing C9orf72 transcripts.

10.
ACS Chem Neurosci ; 10(3): 1765-1782, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30525452

RESUMEN

In order to determine the contributions of histone deacetylase (HDAC) isoforms to the beneficial effects of dual phosphodiesterase 5 (PDE5) and pan-HDAC inhibitors on in vivo models of Alzheimer's disease (AD), we have designed, synthesized, and tested novel chemical probes with the desired target compound profile of PDE5 and class I HDAC selective inhibitors. Compared to previous hydroxamate-based series, these molecules exhibit longer residence times on HDACs. In this scenario, shorter or longer preincubation times may have a significant impact on the IC50 values of these compounds and therefore on their corresponding selectivity profiles on the different HDAC isoforms. On the other hand, different chemical series have been explored and, as expected, some pairwise comparisons show a clear impact of the scaffold on biological responses (e.g., 35a vs 40a). The lead identification process led to compound 29a, which shows an adequate ADME-Tox profile and in vivo target engagement (histone acetylation and cAMP/cGMP response element-binding (CREB) phosphorylation) in the central nervous system (CNS), suggesting that this compound represents an optimized chemical probe; thus, 29a has been assayed in a mouse model of AD (Tg2576).


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Acetilación/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/efectos de los fármacos , Histona Desacetilasas/metabolismo , Humanos , Ratones , Inhibidores de Fosfodiesterasa 5/química
11.
Neurotherapeutics ; 15(3): 742-750, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29675823

RESUMEN

Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.


Asunto(s)
Enfermedad de Alzheimer/patología , Antiparkinsonianos/farmacocinética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Antiparkinsonianos/química , Antiparkinsonianos/uso terapéutico , Autopsia , Modelos Animales de Enfermedad , Humanos , Ratones , Enfermedad de Parkinson/tratamiento farmacológico
12.
Eur J Med Chem ; 150: 506-524, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29549837

RESUMEN

We have identified chemical probes that act as dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors (>1 log unit difference versus class I HDACs) to decipher the contribution of HDAC isoforms to the positive impact of dual-acting PDE5 and HDAC inhibitors on mouse models of Alzheimer's disease (AD) and fine-tune this systems therapeutics approach. Structure- and knowledge-based approaches led to the design of first-in-class molecules with the desired target compound profile: dual PDE5 and HDAC6-selective inhibitors. Compound 44b, which fulfilled the biochemical, functional and ADME-Tox profiling requirements and exhibited adequate pharmacokinetic properties, was selected as pharmacological tool compound and tested in a mouse model of AD (Tg2576) in vivo.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Diseño de Fármacos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Enfermedad de Alzheimer/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular , Neuroglía/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/síntesis química , Inhibidores de Fosfodiesterasa 5/química , Relación Estructura-Actividad
13.
Front Immunol ; 9: 68, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29422905

RESUMEN

A complex network of interactions exists between the immune, the olfactory, and the central nervous system (CNS). Inhalation of different fragrances can affect immunological reactions in response to an antigen but also may have effects on the CNS and cognitive activity. We performed an exploratory study of the immunomodulatory ability of a series of compounds representing each of the 10 odor categories or clusters described previously. We evaluated the impact of each particular odor on the immune response after immunization with the model antigen ovalbumin in combination with the TLR3 agonist poly I:C. We found that some odors behave as immunostimulatory agents, whereas others might be considered as potential immunosuppressant odors. Interestingly, the immunomodulatory capacity was, in some cases, strain-specific. In particular, one of the fragrances, carvone, was found to be immunostimulatory in BALB/c mice and immunosuppressive in C57BL/6J mice, facilitating or impairing viral clearance, respectively, in a model of a viral infection with a recombinant adenovirus. Importantly, inhalation of the odor improved the memory capacity in BALB/c mice in a fear-conditioning test, while it impaired this same capacity in C57BL/6J mice. The improvement in memory capacity in BALB/c was associated with higher CD3+ T cell infiltration into the hippocampus and increased local expression of mRNA coding for IL-1ß, TNF-α, and IL-6 cytokines. In contrast, the memory impairment in C57BL/6 was associated with a reduction in CD3 numbers and an increase in IFN-γ. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals. These results highlight the potential of studying odors as therapeutic agents for CNS-related diseases.


Asunto(s)
Miedo/psicología , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de los fármacos , Memoria/efectos de los fármacos , Monoterpenos/farmacología , Administración por Inhalación , Animales , Cognición , Condicionamiento Psicológico , Monoterpenos Ciclohexánicos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Factores Inmunológicos/administración & dosificación , Inmunomodulación/genética , Leucocitos/efectos de los fármacos , Leucocitos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Monoterpenos/administración & dosificación , Odorantes , Virosis/etiología
14.
Neuro Oncol ; 20(7): 930-941, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29373718

RESUMEN

Background: Glioblastoma, the most aggressive primary brain tumor, is genetically heterogeneous. Alternative splicing (AS) plays a key role in numerous pathologies, including cancer. The objectives of our study were to determine whether aberrant AS could play a role in the malignant phenotype of glioma and to understand the mechanism underlying its aberrant regulation. Methods: We obtained surgical samples from patients with glioblastoma who underwent 5-aminolevulinic fluorescence-guided surgery. Biopsies were taken from the tumor center as well as from adjacent normal-appearing tissue. We used a global splicing array to identify candidate genes aberrantly spliced in these glioblastoma samples. Mechanistic and functional studies were performed to elucidate the role of our top candidate splice variant, BAF45d, in glioblastoma. Results: BAF45d is part of the switch/sucrose nonfermentable complex and plays a key role in the development of the CNS. The BAF45d/6A isoform is present in 85% of over 200 glioma samples that have been analyzed and contributes to the malignant glioma phenotype through the maintenance of an undifferentiated cellular state. We demonstrate that BAF45d splicing is mediated by polypyrimidine tract-binding protein 1 (PTBP1) and that BAF45d regulates PTBP1, uncovering a reciprocal interplay between RNA splicing regulation and transcription. Conclusions: Our data indicate that AS is a mechanism that contributes to the malignant phenotype of glioblastoma. Understanding the consequences of this biological process will uncover new therapeutic targets for this devastating disease.


Asunto(s)
Empalme Alternativo , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Factores de Transcripción/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Movimiento Celular , Proliferación Celular , Glioblastoma/metabolismo , Glioblastoma/patología , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Isoformas de Proteínas , Células Tumorales Cultivadas
15.
ACS Chem Neurosci ; 8(3): 638-661, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27936591

RESUMEN

A novel systems therapeutics approach, involving simultaneous inhibition of phosphodiesterase 5 (PDE5) and histone deacetylase (HDAC), has been validated as a potentially novel therapeutic strategy for the treatment of Alzheimer's disease (AD). First-in-class dual inhibitors bearing a sildenafil core have been very recently reported, and the lead molecule 7 has proven this strategy in AD animal models. Because scaffolds may play a critical role in primary activities and ADME-Tox profiling as well as on intellectual property, we have explored alternative scaffolds (vardenafil- and tadalafil-based cores) and evaluated their impact on critical parameters such as primary activities, permeability, toxicity, and in vivo (pharmacokinetics and functional response in hippocampus) to identify a potential alternative lead molecule bearing a different chemotype for in vivo testing.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Fosfodiesterasa 5/uso terapéutico , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/patología , Animales , Línea Celular Transformada , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Leucocitos Mononucleares , Ratones , Microsomas Hepáticos/efectos de los fármacos , Modelos Moleculares , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/química , Inhibidores de Fosfodiesterasa 5/farmacología
16.
Neuropsychopharmacology ; 42(2): 524-539, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27550730

RESUMEN

The targeting of two independent but synergistic enzymatic activities, histone deacetylases (HDACs, class I and HDAC6) and phosphodiesterase 5 (PDE5), has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). Here we report the discovery of a new first-in-class small-molecule (CM-414) that acts as a dual inhibitor of PDE5 and HDACs. We have used this compound as a chemical probe to validate this systems therapeutics strategy, where an increase in the activation of cAMP/cGMP-responsive element-binding protein (CREB) induced by PDE5 inhibition, combined with moderate HDAC class I inhibition, leads to efficient histone acetylation. This molecule rescued the impaired long-term potentiation evident in hippocampal slices from APP/PS1 mice. Chronic treatment of Tg2576 mice with CM-414 diminished brain Aß and tau phosphorylation (pTau) levels, increased the inactive form of GSK3ß, reverted the decrease in dendritic spine density on hippocampal neurons, and reversed their cognitive deficits, at least in part by inducing the expression of genes related to synaptic transmission. Thus, CM-414 may serve as the starting point to discover balanced dual inhibitors with an optimal efficacy and safety profile for clinical testing on AD patients.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Plasticidad Neuronal/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/administración & dosificación , Pirazoles/uso terapéutico , Pirimidinonas/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Hipocampo/fisiopatología , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Cultivo Primario de Células , Pirazoles/administración & dosificación , Pirazoles/farmacología , Pirimidinonas/administración & dosificación , Pirimidinonas/farmacología
17.
J Med Chem ; 59(19): 8967-9004, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27606546

RESUMEN

Simultaneous inhibition of phosphodiesterase 5 (PDE5) and histone deacetylases (HDAC) has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). To further extend this concept, we designed and synthesized the first chemical series of dual acting PDE5 and HDAC inhibitors, and we validated this systems therapeutics approach. Following the implementation of structure- and knowledge-based approaches, initial hits were designed and were shown to validate our hypothesis of dual in vitro inhibition. Then, an optimization strategy was pursued to obtain a proper tool compound for in vivo testing in AD models. Initial hits were translated into molecules with adequate cellular functional responses (histone acetylation and cAMP/cGMP response element-binding (CREB) phosphorylation in the nanomolar range), an acceptable therapeutic window (>1 log unit), and the ability to cross the blood-brain barrier, leading to the identification of 7 as a candidate for in vivo proof-of-concept testing ( Cuadrado-Tejedor, M.; Garcia-Barroso, C.; Sánchez-Arias, J. A.; Rabal, O.; Mederos, S.; Ugarte, A.; Franco, R.; Segura, V.; Perea, G.; Oyarzabal, J.; Garcia-Osta, A. Neuropsychopharmacology 2016 , in press, doi: 10.1038/npp.2016.163 ).


Asunto(s)
Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Fosfodiesterasa 5/química , Inhibidores de Fosfodiesterasa 5/farmacología , Acetilación/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/farmacocinética , Histona Desacetilasas/metabolismo , Humanos , Ratones , Modelos Moleculares , Inhibidores de Fosfodiesterasa 5/síntesis química , Inhibidores de Fosfodiesterasa 5/farmacocinética
18.
J Neurochem ; 136(2): 403-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26641206

RESUMEN

Sildenafil (Viagra) is a selective inhibitor of phosphodiesterase type 5 (PDE5), which degrades cyclic guanosine monophosphate to the linear nucleotide. Sildenafil is acutely used in erectile dysfunction and chronically in pulmonary hypertension. Evidence in the last decade shows that sildenafil may have potential as a therapeutic option for Alzheimer's disease or other neurodegenerative disorders. The purpose of this work was to explore whether sildenafil crosses the blood-brain barrier. Pharmacokinetic properties of sildenafil in rodents were investigated using (11) C-radiolabeling followed by in vivo positron emission tomography (PET) and ex vivo tissue dissection and gamma counting. PET results in rats suggest penetration into the central nervous system. Ex vivo data in perfused animals suggest that trapping of [(11) C]sildenafil within the cerebral vascular endothelium limits accumulation in the central nervous system parenchyma. Peroral sildenafil administration to Macaca fascicularis and subsequent chemical analysis of plasma and cerebrospinal fluid (CSF) using liquid chromatography coupled with tandem mass spectrometry showed that drug content in the CSF was high enough to achieve PDE5 inhibition, which was also demonstrated by the significant increases in CSF cyclic guanosine monophosphate levels. Central actions of sildenafil include both relaxation of the cerebral vasculature and inhibition of PDE5 in neurons and glia. This central action of sildenafil may underlie its efficacy in neuroprotection models, and may justify the continued search for a PDE5 ligand suitable for PET imaging. Sildenafil interacts with phosphodiesterase type 5 (PDE5) expressed in the endothelium and/or smooth muscle cells of brain vessels and also crosses the blood-brain barrier to interact with PDE5 expressed in brain cells. At therapeutic doses, the concentration of sildenafil in the cerebrospinal fluid (CSF) is high enough to inhibit PDE5 in the neural cells (neurons and glia). In turn, the concentration of cGMP likely increases in parenchymal cells and, as shown in this report, in the CSF. Read the Editorial Highlight for this article on page 220. Cover Image for this issue: doi: 10.1111/jnc.13302.


Asunto(s)
GMP Cíclico/líquido cefalorraquídeo , Inhibidores de Fosfodiesterasa 5/farmacocinética , Citrato de Sildenafil/farmacocinética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Cromatografía Liquida , GMP Cíclico/sangre , Riñón/diagnóstico por imagen , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Macaca fascicularis , Masculino , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Testículo/efectos de los fármacos , Testículo/metabolismo , Factores de Tiempo , Distribución Tisular/efectos de los fármacos , Tomógrafos Computarizados por Rayos X
19.
Methods Mol Biol ; 1303: 117-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26235062

RESUMEN

The 99-amino-acid-long APP-carboxy-terminal fragment, named C99, is a membrane-bound peptide generated from the amyloid precursor protein (APP) by ß-secretase cleavage and is the direct precursor of amyloid beta (Aß). Here we describe a method for the quantification of C99. The amount of C99 is an indicative value of the amyloid pathology in an Alzheimer's disease (AD) model, and could be used as a marker to study AD progression in comprehensive experiments, including screening for new compounds and repurposing of drugs to treat AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Western Blotting/métodos , Fragmentos de Péptidos/metabolismo , Animales , Biomarcadores/química , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Electroforesis , Femenino , Humanos , Mediciones Luminiscentes , Membranas Artificiales , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Solubilidad
20.
Methods Mol Biol ; 1303: 241-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26235071

RESUMEN

A comprehensive chronic mild stress (CMS) procedure is presented, which consists in the application of unpredictable mild stressors to animal models in a random order for several weeks. This assay can be applied to Alzheimer's disease (AD) mouse models, leading to accelerated onset and increased severity of AD phenotypes and signs, including memory deficits and the accumulation of amyloid-ß and phospho-tau. These assays open the way towards advanced studies on the influence of sustained mild stress, stress responses and pathways on the onset and propagation of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/psicología , Modelos Animales de Enfermedad , Fenotipo , Estrés Psicológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Cognición , Cricetinae , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Fosfoproteínas/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...