Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 101(7): 101903, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35580374

RESUMEN

The objective of this study was to estimate the good-of-fitness and precision of parameters of the Gompertz-Laird, Logistic, Richards, and Von Bertalanffy growth models, using different data collection periods (DCP). Two hundred and sixty-two Mexican Creole chicks (116 females and 146 males), were individually weighed to form the following sets of data for each sex: DCP1 (weights recorded weekly from hatching to 63 d, and every 2 wk, from 63 to 133 d of age), DCP2 (weights recorded weekly from hatching to 133 d of age), DCP3 (weights recorded every third day, from hatching to 63 d, and every 14 d, from 63 to 133 d of age), and DCP4 (weights recorded every third day, from hatching to 63 d, and weekly, from 63 to 133 d of age). Data were analyzed using the NLIN procedure of SAS (Marquardt algorithm). For all growth models, the width of confidence interval (CI) of each parameter, was estimated (α = 0.05). The adjusted coefficient of determination (AR2), as well as the Akaike (AIC) and Bayesian information criteria (BIC) were used to select the best model. The higher the AR2, and the lower the width of CI, as well as the AIC and BIC values, the better the model. The Gompertz-Laird model, more frequently showed the highest AR2, and the lowest AIC and BIC values compared to the other models. Moreover, for all models, both sexes and all parameters, most confidence interval widths (all with the Gompertz-Laird model) were the lowest with DCP3 when compared to the other sets of data. In conclusion, the Gompertz-Laird model was the best provided that the chickens are weighed every third day from hatching until 63 d of age, and every 2 wk thereafter.


Asunto(s)
Pollos , Modelos Biológicos , Animales , Teorema de Bayes , Peso Corporal , Recolección de Datos , Femenino , Masculino
2.
Trop Anim Health Prod ; 53(1): 27, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33226489

RESUMEN

The high climatic variability of hot climates of the intertropical zone reduces cattle fertility. In dairy cows in temperates zones, the THI has been used to evaluate the temperature and relative humidity (RH) joint effect in reproduction, but its use is not recommended in all geographic zones; in hot climates, the maximum temperature (Tmax) can provide more convenient information than THI. The objective of this study was to determine the artificial insemination (AI) service seasons and their joint effect with the maximum temperature and relative humidity of the previous seven days, the service day, and posterior seven days to the AI in the tropical milking criollo (LT) heifer's gestation. Climatic data was used to define three seasons: hot-dry (HD), hot-humid (HH), and fresh-dry (FD), and 313 artificial insemination services from 176 heifers were analyzed over fourteen years. The seasons were determined by cluster analysis. Gestation at first service (GF) was analyzed with a logistic regression model and global gestation (GG) with a mixed linear generalized model. The Tmax of previous seven days insemination [Formula: see text] - 0.20 ± 0.09 (p ≤ 0.02) in HD (p ≤ 0.02) and RH of seven days posterior insemination [Formula: see text]= - 0.08 ± 0.04 (p ≤ 0.04) in HD (p ≤ 0.01) affected GF. No effect of the Tmax and RH on the service day was observed (p > 0.05). The highest GG probabilities were higher than 0.70 in HH and FD, making those seasons the most suitable for inseminating LT heifers.


Asunto(s)
Bovinos/fisiología , Humedad , Inseminación Artificial/veterinaria , Temperatura , Animales , Femenino , Fertilidad , Modelos Logísticos , Leche , Modelos Biológicos , Embarazo , Reproducción , Estaciones del Año , Clima Tropical
3.
Asian-Australas J Anim Sci ; 32(4): 564-573, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30208697

RESUMEN

OBJECTIVE: Evaluate the effects of i) dehulling of lupine seed on chemical composition and apparent metabolizable energy (AME) and ii) soybean meal substitution by dehulled lupine seed in broiler diets with enzymes on productive performance, size of digestive organs and welfare-related variables. METHODS: Experiment 1, chemical composition and AME were determined in whole and dehulled lupine seed. Experiment 2, two hundred eighty-eight one-day-old male Ross 308 broilers were used. The experimental diets were maize-soybean meal (MS), MS with enzymes (MSE) and maize-dehulled lupine seed with enzymes (MLE). Diets were assigned to the experimental units under a completely randomized design (eight replicates per diet). The body weight (BW) gain, feed intake, feed conversion, digestive organ weights, gait score, latency to lie down and valgus/varus angulation were evaluated. RESULTS: The dehulling process increased protein (25.0% to 31.1%), AME (5.9 to 8.8 MJ/kg) and amino acid contents. The BW gain of broilers fed the MLE diet was similar (p>0.05) to that of those fed the MS diet, but lower than that of those fed the MSE diet. Feed intake of broilers fed the MLE diet was higher (p<0.05) than that of those fed the MS diet and similar (p>0.05) to those fed the MSE diet. Feed conversion of broilers fed the MLE diet was 8.0% and 8.7% higher (p<0.05) than that of those fed the MS and MSE diets, respectively. Broilers fed the MLE diet had the highest (p<0.05) relative proventriculus and gizzard weights, but had poor welfare-related variables. CONCLUSION: It is possible to substitute soybean meal by dehulled lupine seed with enzymes in broiler diets, obtaining similar BW gains in broilers fed the MLE and MS diets; however, a higher feed intake is required. Additionally, the MLE diet reduced welfare-related variables.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...