Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 17(26): e2100050, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34061425

RESUMEN

The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.

2.
Struct Dyn ; 7(1): 014303, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32039283

RESUMEN

Here, we report on a novel narrowband High Harmonic Generation (HHG) light source designed for ultrafast photoelectron spectroscopy (PES) on solids. Notably, at 16.9 eV photon energy, the harmonics bandwidth equals 19 meV. This result has been obtained by seeding the HHG process with 230 fs pulses at 515 nm. The ultimate energy resolution achieved on a polycrystalline Au sample at 40 K is ∼22 meV at 16.9 eV. These parameters set a new benchmark for narrowband HHG sources and have been obtained by varying the repetition rate up to 200 kHz and, consequently, mitigating the space charge, operating with ≈ 3 × 10 7 electrons/s and ≈ 5 × 10 8 photons/s. By comparing the harmonics bandwidth and the ultimate energy resolution with a pulse duration of ∼105 fs (as retrieved from time-resolved experiments on bismuth selenide), we demonstrate a new route for ultrafast space-charge-free PES experiments on solids close to transform-limit conditions.

3.
Phys Rev E ; 99(6-1): 063309, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330687

RESUMEN

Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable diffractive imaging of individual nanosized objects with a single x-ray laser shot. The enormous data sets with up to several million diffraction patterns present a severe problem for data analysis because of the high dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality. Usually, custom-made algorithms are developed at a considerable effort to approximate the particular features connected to an individual specimen, but because they face different experimental conditions, these approaches do not generalize well. On the other hand, deep neural networks are the principal instrument for today's revolution in automated image recognition, a development that has not been adapted to its full potential for data analysis in science. We recently published [Langbehn et al., Phys. Rev. Lett. 121, 255301 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255301] the application of a deep neural network as a feature extractor for wide-angle diffraction images of helium nanodroplets. Here we present the setup, our modifications, and the training process of the deep neural network for diffraction image classification and its systematic bench marking. We find that deep neural networks significantly outperform previous attempts for sorting and classifying complex diffraction patterns and are a significant improvement for the much-needed assistance during postprocessing of large amounts of experimental coherent diffraction imaging data.

4.
Phys Rev Lett ; 121(25): 255301, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30608832

RESUMEN

A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.

5.
J Synchrotron Radiat ; 23(1): 132-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26698055

RESUMEN

The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs-nm time-length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.

6.
J Synchrotron Radiat ; 22(3): 553-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931068

RESUMEN

The Elastic and Inelastic Scattering (EIS) beamline at the free-electron laser FERMI is presented. It consists of two separate end-stations: EIS-TIMEX, dedicated to ultrafast time-resolved studies of matter under extreme and metastable conditions, and EIS-TIMER, dedicated to time-resolved spectroscopy of mesoscopic dynamics in condensed matter. The scientific objectives are discussed and the instrument layout illustrated, together with the results from first exemplifying experiments.

7.
Phys Chem Chem Phys ; 17(16): 10987-92, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25824617

RESUMEN

The formation of a hydration shell in acetamide aqueous solution has been investigated by means of UV Raman spectroscopy. The experimental results reveal the existence of two distinct regimes of water dynamics. At high acetamide concentration water molecules show a structural and dynamical behavior consistent with the so-called iceberg model. Upon increasing the amount of water we observe the formation of a hydration shell marked by fastening of hydrogen-bond dynamics. Such a behavior may help to shed light on the scientific debate on how water rearranges around the hydrophobic portions of solute molecules (iceberg vs. non-iceberg models).


Asunto(s)
Acetamidas/química , Agua/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Espectrometría Raman
8.
Opt Lett ; 39(17): 5110-3, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25166086

RESUMEN

We report on the possibility of extracting fast dynamical relaxation times from homodyne transient grating measurements. We demonstrate the validity of our approach by experimental measurements on liquid acetonitrile and by comparison with literature. This approach would be of tremendous help in the case of free-electron-laser-based transient grating experiments due to the overcoming of technical difficulties, such as large-angle geometries.

9.
J Chem Phys ; 139(1): 015101, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23822323

RESUMEN

Glycine aqueous solutions have been studied as a function of temperature and concentration by means of UV Brillouin and Raman spectroscopes. Brillouin spectra provided information on the average relaxation time τα related to the mechanisms of hydrogen bonds (HBs) formation and breaking. The concentration-temperature behavior of τ has been compared to the vibrational dephasing lifetime of atoms involved in HBs, as derived by a lineshape analysis of Raman spectra. We point out how it is possible to trace the thermodynamic behavior of a selected HB from Raman data. In particular, our results confirm the predominant role played in the hydration process by the water molecules surrounding the hydrophobic groups and, furthermore, evidence how at low temperature the HB strength between these molecules is greater than those found in bulk water and between glycine and water molecules.


Asunto(s)
Glicina/química , Termodinámica , Agua/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Espectrometría Raman , Temperatura , Vibración
10.
J Phys Chem B ; 116(44): 13219-27, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23083304

RESUMEN

Raman spectra of acetic acid aqueous solutions in the 500-4000 cm(-1) range have been measured as a function of water concentration to investigate the hydration shell formation mechanism around the acetic acid molecules. A fitting procedure based on the Kubo-Anderson model has been applied to the spectra. This has allowed us to determine the average lifetime of the hydrogen bonds involving a given functional group, as well as their geometrical distribution as a function of water concentration. The comparison of our results with literature data has demonstrated that the fitting model is adequate to describe organic water mixtures. Finally, the role of water in the formation of the hydrophobic shell around the methyl group in diluted acetic acid water solutions has been discussed, evidencing how the methyl group hydrophobicity strongly influences the acetic acid behavior in aqueous solutions.


Asunto(s)
Ácido Acético/química , Agua/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...