Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G219-G238, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787179

RESUMEN

The endocannabinoid system of the gastrointestinal tract is involved in the control of intestinal barrier function. Whether the cannabinoid 1 (CB1) receptor is expressed on the intestinal epithelium and acutely regulates barrier function has not been determined. Here, we tested the hypothesis that ligands of the CB1 receptor acutely modulate small intestinal permeability and that this is associated with altered distribution of tight junction proteins. We examined the acute effects of CB1 receptor ligands on small intestinal permeability both in chow-fed and 2-wk high-fat diet (HFD)-fed mice using Ussing chambers. We assessed the distribution of CB1 receptor and tight junction proteins using immunofluorescence and the expression of CB1 receptor using PCR. A low level of CB1 expression was found on the intestinal epithelium. CB1 receptor was highly expressed on enteric nerves in the lamina propria. Neither the CB1/CB2 agonist CP55,940 nor the CB1 neutral antagonist AM6545 altered the flux of 4kDa FITC dextran (FD4) across the jejunum or ileum of chow-fed mice. Remarkably, both CP55,940 and AM6545 reduced FD4 flux across the jejunum and ileum in HFD-fed mice that have elevated baseline intestinal permeability. These effects were absent in CB1 knockout mice. CP55,940 reduced the expression of claudin-2, whereas AM6545 had little effect on claudin-2 expression. Neither ligand altered the expression of ZO-1. Our data suggest that CB1 receptor on the intestinal epithelium regulates tight junction protein expression and restores barrier function when it is increased following exposure to a HFD for 2 wk.NEW & NOTEWORTHY The endocannabinoid system of the gastrointestinal tract regulates homeostasis by acting as brake on motility and secretion. Here we show that when exposed to a high fat diet, intestinal permeability is increased and activation of the CB1 receptor on the intestinal epithelium restores barrier function. This work further highlights the role of the endocannabinoid system in regulating intestinal homeostasis when it is perturbed.


Asunto(s)
Dieta Alta en Grasa , Mucosa Intestinal , Receptor Cannabinoide CB1 , Animales , Claudina-2/metabolismo , Dieta Alta en Grasa/efectos adversos , Endocannabinoides/fisiología , Mucosa Intestinal/fisiología , Ratones , Permeabilidad , Receptor Cannabinoide CB1/fisiología
2.
Cell Mol Gastroenterol Hepatol ; 14(4): 947-963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35750314

RESUMEN

The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.


Asunto(s)
Endocannabinoides , Tracto Gastrointestinal , Tracto Gastrointestinal/fisiología , Homeostasis , Intestinos , Transducción de Señal
3.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G254-G264, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31709828

RESUMEN

The small intestine regulates barrier function to absorb nutrients while avoiding the entry of potentially harmful substances or bacteria. Barrier function is dynamically regulated in part by the enteric nervous system (ENS). The role of the ENS in regulating barrier function in response to luminal nutrients is not well understood. We hypothesize that the ENS regulates intestinal permeability and ion flux in the small intestine in response to luminal nutrients. Segments of jejunum and ileum from mice were mounted in Ussing chambers. Transepithelial electrical resistance (TER), short-circuit current (Isc), and permeability to 4-kDa FITC-dextran (FD4) were recorded after mucosal stimulation with either glucose, fructose, glutamine (10 mM), or 5% Intralipid. Mucosal lipopolysaccharide (1 mg/mL) was also studied. Enteric neurons were inhibited with tetrodotoxin (TTX; 0.5 µM) or activated with veratridine (10 µM). Enteric glia were inhibited with the connexin-43 blocker Gap26 (20 µM). Glucose, glutamine, Intralipid, and veratridine acutely modified Isc in the jejunum and ileum, but the effect of nutrients on Isc was insensitive to TTX. TTX, Gap26, and veratridine treatment did not affect baseline TER or permeability. Intralipid acutely decreased permeability to FD4, while LPS increased it. TTX pretreatment abolished the effect of Intralipid and exacerbated the LPS-induced increase in permeability. Luminal nutrients and enteric nerve activity both affect ion flux in the mouse small intestine acutely but independently of each other. Neither neuronal nor glial activity is required for the maintenance of baseline intestinal permeability; however, neuronal activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide.NEW & NOTEWORTHY Luminal nutrients and enteric nerve activity both affect ion transport in the mouse small intestine acutely, but independently of each other. Activation or inhibition of the enteric neurons does not affect intestinal permeability, but enteric neural activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide. The enteric nervous system regulates epithelial homeostasis in the small intestine in a time-dependent, region- and stimulus-specific manner.


Asunto(s)
Sistema Nervioso Entérico/fisiología , Absorción Intestinal/fisiología , Intestino Delgado/metabolismo , Transporte Iónico/fisiología , Nutrientes , Animales , Impedancia Eléctrica , Sistema Nervioso Entérico/metabolismo , Íleon/metabolismo , Técnicas In Vitro , Absorción Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Yeyuno/metabolismo , Lípidos/farmacología , Lipopolisacáridos/farmacología , Masculino , Ratones , Neuronas/metabolismo , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...