Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496574

RESUMEN

Recent GWASs have demonstrated that comorbid disorders share genetic liabilities. But whether and how these shared liabilities can be used for the classification and differentiation of comorbid disorders remains unclear. In this study, we use polygenic risk scores (PRSs) estimated from 42 comorbid traits and the deep neural networks (DNN) architecture to classify and differentiate schizophrenia (SCZ), bipolar disorder (BIP) and major depressive disorder (MDD). Multiple PRSs were obtained for individuals from the schizophrenia (SCZ) (cases = 6,317, controls = 7,240), bipolar disorder (BIP) (cases = 2,634, controls 4,425) and major depressive disorder (MDD) (cases = 1,704, controls = 3,357) datasets, and classification models were constructed with and without the inclusion of PRSs of the target (SCZ, BIP or MDD). Models with the inclusion of target PRSs performed well as expected. Surprisingly, we found that SCZ could be classified with only the PRSs from 35 comorbid traits (not including the target SCZ and directly related traits) (accuracy 0.760 ± 0.007, AUC 0.843 ± 0.005). Similar results were obtained for BIP (33 traits, accuracy 0.768 ± 0.007, AUC 0.848 ± 0.009), and MDD (36 traits, accuracy 0.794 ± 0.010, AUC 0.869 ± 0.004). Furthermore, these PRSs from comorbid traits alone could effectively differentiate unaffected controls, SCZ, BIP, and MDD patients (average categorical accuracy 0.861 ± 0.003, average AUC 0.961 ± 0.041). These results suggest that the shared liabilities from comorbid traits alone may be sufficient to classify SCZ, BIP and MDD. More importantly, these results imply that a data-driven and objective diagnosis and differentiation of SCZ, BIP and MDD may be feasible.

2.
Sci Rep ; 13(1): 5258, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002253

RESUMEN

A growing body of evidence suggests that dysbiosis of the human gut microbiota is associated with neurodegenerative diseases like Alzheimer's disease (AD) via neuroinflammatory processes across the microbiota-gut-brain axis. The gut microbiota affects brain health through the secretion of toxins and short-chain fatty acids, which modulates gut permeability and numerous immune functions. Observational studies indicate that AD patients have reduced microbiome diversity, which could contribute to the pathogenesis of the disease. Uncovering the genetic basis of microbial abundance and its effect on AD could suggest lifestyle changes that may reduce an individual's risk for the disease. Using the largest genome-wide association study of gut microbiota genera from the MiBioGen consortium, we used polygenic risk score (PRS) analyses with the "best-fit" model implemented in PRSice-2 and determined the genetic correlation between 119 genera and AD in a discovery sample (ADc12 case/control: 1278/1293). To confirm the results from the discovery sample, we next repeated the PRS analysis in a replication sample (GenADA case/control: 799/778) and then performed a meta-analysis with the PRS results from both samples. Finally, we conducted a linear regression analysis to assess the correlation between the PRSs for the significant genera and the APOE genotypes. In the discovery sample, 20 gut microbiota genera were initially identified as genetically associated with AD case/control status. Of these 20, three genera (Eubacterium fissicatena as a protective factor, Collinsella, and Veillonella as a risk factor) were independently significant in the replication sample. Meta-analysis with discovery and replication samples confirmed that ten genera had a significant correlation with AD, four of which were significantly associated with the APOE rs429358 risk allele in a direction consistent with their protective/risk designation in AD association. Notably, the proinflammatory genus Collinsella, identified as a risk factor for AD, was positively correlated with the APOE rs429358 risk allele in both samples. Overall, the host genetic factors influencing the abundance of ten genera are significantly associated with AD, suggesting that these genera may serve as biomarkers and targets for AD treatment and intervention. Our results highlight that proinflammatory gut microbiota might promote AD development through interaction with APOE. Larger datasets and functional studies are required to understand their causal relationships.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Microbiota , Humanos , Enfermedad de Alzheimer/patología , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Apolipoproteínas E/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA