Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8189-8197, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38471087

RESUMEN

Conventional ligands for CsPbBr3 perovskite nanocrystals (NCs), composed of polar, coordinating head groups (e.g., ammonium or zwitterionic) and aliphatic tails, are instrumental in stabilizing the NCs against sintering and aggregation. Nonetheless, the aliphatic (insulating) nature of these ligands represents drawbacks with respect to objectives in optoelectronics, and yet removing these ligands typically leads to a loss of colloidal stability. In this paper, we describe the preparation of CsPbBr3 NCs in the presence of discrete conjugated oligomers that were prepared by an iterative synthetic approach and capped at their chain ends with sulfobetaine zwitterions for perovskite coordination. Notably, these zwitterionic oligofluorenes are compatible with the hot injection and ligand exchange conditions used to prepare CsPbBr3 NCs, yielding stable NC dispersions with high photoluminescence quantum yields (PLQY, >90%) and spectral features representative of both the perovskite core and conjugated ligand shell. Controlling the chain length of these capping ligands effectively regulated inter-NC spacing and packing geometry when cast into solid films, with evidence derived from both transmission electron microscopy (TEM) and grazing incidence X-ray scattering measurements.

2.
Angew Chem Int Ed Engl ; 61(37): e202207126, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35925675

RESUMEN

Post-synthesis anion exchange of all-inorganic cesium lead halide perovskite nanocrystals (CsPbX3 NCs, where X=Cl, Br, and/or I) provides a rapid and simple means of tuning their band gap and photoluminescence emission wavelengths. Here we report color-shifting of CsPbX3 nanocrystals induced by a macromolecular source of halide ions, specifically using polystyrene with ammonium halides as pendent groups. This strategy for introducing new halides to the perovskite nanocrystals gave access to perovskite-polymer hybrid materials as solutions, thin films, or free-flowing powders. Spectroscopic measurements of the halide-exchanged nanocrystal products revealed high photoluminescence quantum yields across the visible spectrum, with exchange kinetics that were tunable based on the solution environment, suggesting an aggregation-inhibited exchange process that affords access to multi-colored solutions and films.

3.
ACS Appl Mater Interfaces ; 14(26): 29896-29904, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758244

RESUMEN

Organic solar cells (OSCs) and perovskite solar cells (PVSCs) are promising candidates for next-generation thin film photovoltaic technologies. The integration of OSCs with PVSCs in tandem devices is now attracting significant attention due to their similar fabrication procedures and the potential to afford a higher device performance. Here, a thickness-insensitive and solvent-resistant interconnecting layer is developed to efficiently connect perovskite and organic subcells with low contact resistance. The resultant perovskite-organic tandem devices maintain high efficiencies over a wide thickness range of the interconnecting layer, from ∼20 nm to ∼50 nm, providing an easily fabricated, solvent-resistant platform to integrate perovskite and organic active layers with low-temperature solution processing techniques. The tandem devices containing an ultrathin PVSC and a typical non-fullerene OSC give a maximum efficiency of 19.2%, which is much higher than those of the single-junction devices. Moreover, highly reproducible 1 cm2 perovskite-organic tandem devices are achieved using the thickness-insensitive and solvent-resistant interconnecting layer, and an efficiency of 17.8% is realized. These 1 cm2 tandem solar cells are used successfully in solar-to-hydrogen systems to afford a solar-to-fuel conversion efficiency of 11.2%. Overall, these advances represent significant progress in the design of ultrathin and facile solution processed perovskite-organic tandem solar cells.

4.
Chemistry ; 28(30): e202200409, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35373422

RESUMEN

Traditional hot injection methods for the preparation of cesium lead halide perovskite nanocrystals (CsPbX3 PNCs, where X=Cl, Br, or I) rely on small molecule surfactants to produce PNCs with cube, plate, or rod-like morphologies. Here, we describe a new method whereby zwitterionic block copolymers are employed as macromolecular ligands in PNC synthesis, affording PNCs with excellent colloidal stability, high photoluminescence quantum yield, and in some cases distinctly non-cubic shapes. The block copolymers used in this study - composed of a poly(n-butyl methacrylate) hydrophobic block and zwitterionic methacrylate hydrophilic blocks - dissolve in useful solvents for PNC growth despite containing large mole percentages of zwitterionic groups. PNCs prepared with block copolymer ligands were found to disperse and retain their fluorescence in a range of polar organic solvents and were amenable to direct integration into optically transparent nanocomposite thin films with high PNC content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...