Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Signal Transduct Target Ther ; 9(1): 84, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575583

RESUMEN

Circulating tumor cells (CTCs) are precursors of distant metastasis in a subset of cancer patients. A better understanding of CTCs heterogeneity and how these CTCs survive during hematogenous dissemination could lay the foundation for therapeutic prevention of cancer metastasis. It remains elusive how CTCs evade immune surveillance and elimination by immune cells. In this study, we unequivocally identified a subpopulation of CTCs shielded with extracellular vesicle (EVs)-derived CD45 (termed as CD45+ CTCs) that resisted T cell attack. A higher percentage of CD45+ CTCs was found to be closely correlated with higher incidence of metastasis and worse prognosis in cancer patients. Moreover, CD45+ tumor cells orchestrated an immunosuppressive milieu and CD45+ CTCs exhibited remarkably stronger metastatic potential than CD45- CTCs in vivo. Mechanistically, CD45 expressing on tumor surfaces was shown to form intercellular CD45-CD45 homophilic interactions with CD45 on T cells, thereby preventing CD45 exclusion from TCR-pMHC synapse and leading to diminished TCR signaling transduction and suppressed immune response. Together, these results pointed to an underappreciated capability of EVs-derived CD45-dressed CTCs in immune evasion and metastasis, providing a rationale for targeting EVs-derived CD45 internalization by CTCs to prevent cancer metastasis.


Asunto(s)
Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Células Neoplásicas Circulantes/metabolismo , Receptores de Antígenos de Linfocitos T , Linfocitos T/metabolismo
2.
Front Oncol ; 11: 760765, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745999

RESUMEN

Management of patients with hepatocellular carcinoma (HCC) largely relies on surgery and other systemic therapies. However, the poor diagnosis of cancer recurrence or metastasis can lead to a high frequency of treatment failure. Thus, factors that can predict disease status and prognosis of patients need to be identified. Circulating tumor cells (CTCs) are known to accurately predict survival of patients. Here, we report a case in which CTCs successfully predicted the progression of metastatic colon polyps after interventional therapy for HCC. A 48-year-old man was diagnosed with HCC with moderate differentiation in 2016 and subsequently underwent orthotopic liver transplantation. Discharge medications were continued with immunosuppressants (tacrolimus) and antiviral drugs (Titin). In 2018, a colon polyp, a type of tubular adenoma, was detected and surgically removed. However, in 2020, the same tubular adenoma recurred. During cancer progression, CTC counts were measured to monitor the status of metastasis, and a positive correlation was noted between the dynamic change in CTC counts and cancer response (metastasis or recurrence). When diagnosing the metastatic adenoma, the number of cytokeratin-positive CTCs was significantly increased; however, it dropped to zero after the polyp was surgically removed. The same change in CTC counts was observed during the second recurrence of the adenoma, and a subgroup of CTCs, cell surface vimentin-positive CTCs, was significantly increased. The CTC count dropped to an undetectable level after the surgery for the first time. In summary, we presented a clinical case in which CTC counts could predict disease progression during HCC metastasis. Thus, CTC counts should be measured after liver transplantation in patients with HCC for diagnosis and clinical decision-making as it is effective in monitoring cancer progression.

3.
Photoacoustics ; 14: 12-18, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30923675

RESUMEN

A dual modality microscopy with the highest imaging resolution reported so far based on reflection-mode photoacoustic and confocal fluorescence is presented in this study. The unique design of the imaging head of the microscope makes it highly convenient for scalable high-resolution imaging by simply switching the optical objectives. The submicron resolution performance of the system is demonstrated via in vivo imaging of zebrafish, normal mouse ear, and a xenograft tumor model inoculated in the mouse ear. The imaging results confirm that the presented dual-modality microscopy imaging system could play a vital role in observing model organism, studying tumor angiogenesis and assessment of antineoplastic drugs.

4.
Mar Biotechnol (NY) ; 8(3): 304-11, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16501876

RESUMEN

Production of zebrafish by modifying endogenous growth hormone (GH) gene through homologous recombination is described here. We first constructed the targeting vectors pGHT1.7k and pGHT2.8k, which were used for the knockout/knockin of the endogenous GH gene of zebrafish, and injected these two vectors into the embryos of zebrafish. Overall, the rate of targeted integration with the characteristic of germ line transmission in zebrafish was 1.7 x 10(-6). In one experimental patch, the integrating efficiency of pGHT2.8k was higher than that of pGHT1.7k, but the lethal effect of pGHT2.8k was stronger than that of pGHT1.7k. The clones with the correct integration of target genes were identified by a simple screening procedure based on green fluorescent protein (GFP) and RFP dual selection, which corresponded to homologous recombination and random insertion, respectively. The potential homologous recombination zebrafish was further bred to produce a heterozygous F1 generation, selected based on the presence of GFP. The potential targeted integration of exogenous GH genes into a zebrafish genome at the P0 generation was further verified by polymerase chain reaction and Southern blot analysis. Approximately 2.5% of potential founder knockout and knockin zebrafish had the characteristic of germ line transmission. In this study, we developed an efficient method for producing the targeted gene modification in zebrafish for future studies on genetic modifications and gene functions using this model organism.


Asunto(s)
Eliminación de Gen , Proteínas Fluorescentes Verdes/genética , Mutagénesis Sitio-Dirigida/métodos , Organismos Modificados Genéticamente/genética , Pez Cebra/genética , Animales , Regulación de la Expresión Génica , Genoma/genética , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...