Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591083

RESUMEN

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

2.
Biomed Chromatogr ; 38(1): e5763, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858975

RESUMEN

Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metionina/metabolismo , Metionina/farmacología , Colina , Hígado/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacología , Dieta , Inflamación/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2104-2111, 2021 Apr.
Artículo en Chino | MEDLINE | ID: mdl-33982526

RESUMEN

The aim of this study was to elucidate the mechanism of nuciferine on alleviating obesity based on modulating gut microbiota, ameliorating chronic inflammation, and improving gut permeability. In this study, the obese model mice were induced by high-fat diet and then randomly divided into model group, and nuciferine group; some other mice of the same week age were fed with normal diet as normal group. In the modeling process, the mice were administered intragastrically(ig) for 12 weeks. In the course of both modeling and treatment, the body weight and food intake of mice in each group were measured weekly. After modeling and treatment, the Lee's index, weight percentage of inguinal subcutaneous fat, and the level of blood lipid in each group were measured. The pathological changes of adipocytes were observed by HE staining to evaluate the efficacy of nuciferine treatment in obese model mice. 16 S rRNA sequencing analysis was conducted to study the changes in diversity and abundance of gut microbiota after nuciferine treatment. Enzyme-linked immunosorbent assay(ELISA) and quantitative Real-time polymerase chain reaction(qPCR) were used to detect the levels of inflammatory factors interleukin-6(IL-6), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α) and the expression of related genes in adipose tissue of mice in each group, so as to evaluate the effect of nuciferine on chronic inflammation of mice in obese model group. qPCR was used to detect the expression of occludin and tight junction protein 1(ZO-1)gene in colon tissure, so as to evaluate the effect of nuciferine on intestinal permeability of mice in obese group. Nuciferine decreased the body weight of obese mice, Lee's index, weight percentage of inguinal subcutaneous fat(P<0.05), and reduced the volume of adipocytes, decreased the level of total cholesterol(TC), triglyceride(TG), and low density lipoprotein cholesterol(LDL-C)(P<0.05) in serum, improved dysbacteriosis, increased the relative abundance of Alloprevotella, Turicibacter, and Lactobacillus, lowered the relative abundance of Helicobac-ter, decreased the expression of inflammatory cytokines IL-6, IL-1ß, and TNF-α genes in adipose tissue(P<0.01), decreased the levels of inflammatory cytokines IL-6, IL-1ß, and TNF-α in serum(P<0.05), and increased the expression of occludin and ZO-1 genes related to tight junction in colon tissue(P<0.01). Nuciferine could treat obesity through modulating gut microbiota, decreasing gut permeability and ameliorating inflammation.


Asunto(s)
Microbioma Gastrointestinal , Animales , Aporfinas , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/genética
4.
Chin Herb Med ; 13(3): 410-415, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36118924

RESUMEN

Objective: The aim of this study is to discover the possible working mechanisms of Ardisiae Japonicae Herba (AJH) on hepatoma carcinoma (HCC). Methods: In this study, ethanol extract of AJH was prepared and used to treat HCC cell in vitro. Furthermore, a genomic wide RNA sequencing (RNA-seq) was performed to screen deregulated genes in HCC cells after the treatment of AJH extract. The gene and protein expression related to lipid metabolism in HCC cells were also investigated to validate the results obtained from RNA-seq. Results: AJH extract could inhibit HCC cell proliferation in vitro. RNA-seq analysis has identified 1,601 differentially expressed genes (DEGs, fold change ≥ 2.0 or fold change ≤ 0.5, P < 0.05) in HCC after AJH extract treatment, which included 225 up-regulated genes and 1,376 down-regulated genes. KEGG pathway analysis of DEGs demonstrated that lipid metabolism was a potential pathway related to AJH treatment. In agreement with the RNA-seq data, qPCR and Western-blot analysis indicated that expression of genes and proteins related to lipid metabolism (SREBP1, ACC, ACLY and FASN) were significantly down-regulated in AJH treatment group as compared with the control group. Furthermore, AJH extract could also decrease lipid contents and cellular free fatty acid levels in HCC cells. Conclusion: Ethanol extract of AJH could inhibit HCC cell proliferation in vitro, the possible mechanism may be related to the inhibition of lipid metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...