Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(15): 8108-8114, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38568421

RESUMEN

Although intense efforts have been devoted to the development of thermally conductive epoxy resin composites, most previous works ignore the importance of the contact thermal resistance between epoxy resin composites and mating surfaces. Here, we report on epoxy resin/hexagonal boron nitride (h-BN) composites, which show low contact thermal resistance with the contacting surface by tuning adhesion energy. We found that adhesion energy increases with increasing the ratio of soybean-based epoxy resin/amino silicone oil and h-BN contents. The adhesion energy has a negative correlation with the contact thermal resistance; that is, enhancing the adhesion energy will lead to reduced contact thermal resistance. The contact thermal conductance increases with the h-BN contents and is low to 0.025 mm2·K/W for the epoxy resin/60 wt % h-BN composites, which is consistent with the theoretically calculated value. By investigating the wettability and chain dynamics of the epoxy resin/h-BN composites, we confirm that the low contact thermal resistance stems from the increased intermolecular interaction between the epoxy resin chains. The present study provides a practical approach for the development of epoxy resin composites with enhanced thermal conductivity and reduced contact thermal resistance, aiming for effective thermal management of electronics.

2.
Materials (Basel) ; 16(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37834530

RESUMEN

The research and application progress of resin-based composite materials in the field of electrical insulation has attracted considerable attention and emerged as a current research hotspot. This review comprehensively summarized the research and application progress of resin-based composite materials in the field of electrical insulation, providing detailed insights into their concept, properties, and preparation methods. In addition, a comprehensive evaluation of the electrical insulation performance, mechanical properties, and thermal properties of resin-based composite materials was presented, along with an in-depth analysis of their current application status. Despite the immense potential and development opportunities of resin-based composite materials, they also face several challenges. This review serves as a valuable reference and resource for researchers in related fields and aimed to promote further research and application development of resin-based composite materials in the field of electrical insulation.

3.
Polymers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960938

RESUMEN

Polyimide (PI) can be used as a cladding insulation for high frequency power transformers, and along-side discharge can lead to insulation failure, so material modification techniques are used. In this paper, different doped nano-SiO2 are introduced into polyimide for nanocomposite modification. The results of testing the life time of high-frequency electrical stress along-side discharge show that the 10% SiO2 doping has the longest life time. The results show that: for composites prone to corona, their flashover causes more damage, and both positive half-cycle and polarity reversal discharges are more violent; compared to pure PI, the positive half-cycle and overall discharge amplitude and number of modified films are smaller, but the negative half-cycle is larger; at creeping development stages, the number of discharges is smaller, and the discharge amplitude of both films fluctuates in the mid-term, with the modified films having fewer discharges and the PI films discharging more violently in the later stages. The increase in the intensity of the discharge was greater in the later stages, and the amplitude and number of discharges were much higher than those of the modified film, which led to a rapid breakdown of the pure polyimide film. Further research found that resistivity plays an important role in the structural properties of the material in the middle and late stages, light energy absorption in the modified film plays an important role, the distribution of traps also affects the discharge process, and in the late stages of the discharge, the heating of the material itself has a greater impact on the breakdown, so the pure polyimide film as a whole discharges more severely and has the shortest life.

4.
J Phys Chem Lett ; 11(5): 1881-1889, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32058721

RESUMEN

The dielectric strength of cellulose-liquid composites is always about several times higher than that of the cellulose paper and insulating liquids. However, this experimental phenomenon has not yet been demonstrated theoretically. Herein, the spectra characterization, molecular simulation, and wave function analysis method provide a new insight that the role of nanoscale interfacial adsorption of cellulose-liquid is exclusive for composites affecting the charge separation and producing the deep-level traps to seriously hinder electromigration under an electric field, which is responsible for the difference in dielectric strength. Meanwhile, the π conjugation and σ-π hyperconjugation effects enhance the electrical stability of aromatic hydrocarbon insulating liquids. In conclusion, interfacial trap theory can be used to explain the correlation of dielectric strength between cellulose-liquid composites and cellulose paper or dielectric liquids. It can be expected that materials with high dielectric strength can be manufactured according to the fundamental study of interfacial trap theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...