Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Phys Chem A ; 123(35): 7576-7581, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31393727

RESUMEN

Ammonia synthesis by using water as a hydrogen source is a challenging task. Laser-ablation-generated ScNH+ cations have been mass-selected using a quadrupole mass filter and reacted with H2O in a linear ion trap reactor under thermal collision conditions. Through mass spectrometry in conjunction with density functional theory calculations, we found that ammonia is released as the product in the reaction of ScNH+ with H2O, and this reaction is with high efficiency and selectivity, and the rate constant for the reaction is (1.14 ± 0.23) × 10-10 cm3 molecule-1 s-1, corresponding to the reaction efficiency of 15%. Metal imido complexes (*MNH) are one of the important intermediates in the currently reported NH3 synthetic reactions. The gas-phase ScNH+ cation can be a simplified model of *MNH over catalysts of NH3 synthesis, and the facile proton transfer mechanism obtained in this model system may offer fundamental mechanistic insights into how to design catalysts for ammonia production by using water as the hydrogen source under ambient conditions.

3.
J Am Chem Soc ; 141(32): 12592-12600, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31314515

RESUMEN

Dinitrogen activation and reduction is one of the most challenging and important subjects in chemistry. Herein, we report the N2 binding and reduction at the well-defined Ta3N3H- and Ta3N3- gas-phase clusters by using mass spectrometry (MS), anion photoelectron spectroscopy (PES), and quantum-chemical calculations. The PES and calculation results show clear evidence that N2 can be adsorbed and completely activated by Ta3N3H- and Ta3N3- clusters, yielding to the products Ta3N5H- and Ta3N5-, but the reactivity of Ta3N3H- is five times higher than that of the dehydrogenated Ta3N3- clusters. The detailed mechanistic investigations further indicate that a dissociative mechanism dominates the N2 activation reactions mediated by Ta3N3H- and Ta3N3-; two and three Ta atoms are active sites and also electron donors for the N2 reduction, respectively. Although the hydrogen atom in Ta3N3H- is not directly involved in the reaction, its very presence modifies the charge distribution and the geometry of Ta3N3H-, which is crucial to increase the reactivity. The mechanisms revealed in this gas-phase study stress the fundamental rules for N2 activation and the important role of transition metals as active sites as well as the new significant role of metal hydride bonds in the process of N2 reduction, which provides molecular-level insights into the rational design of tantalum nitride-based catalysts for N2 fixation and activation or NH3 synthesis.

4.
J Chem Phys ; 149(7): 074308, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134679

RESUMEN

Gas-phase vanadium oxide cluster cations and anions are prepared by laser ablation. The small cluster ions (<1000 amu) are mass-selected using a quadrupole mass filter and reacted with benzene in a linear ion trap reactor; large clusters (>1000 amu) with no mass selection are reacted with C6H6 in a fast flow reactor. Rich product variety is encountered in these reactions, and the reaction channels for small cationic and anionic systems are different. For large clusters, the reactivity patterns of (V2O5) n+ (n = 6-25) and (V2O5) n O- (n = 6-24) cluster series are very similar to each other, indicating that the charge state has little influence on the oxidation of benzene. In sharp contrast to the dramatic changes of reactivity of small clusters, a weakly size dependent reaction behavior of large (V2O5)6-25+ and (V2O5)6-24O- clusters is observed. Therefore, the charge state and the size are not the major factors influencing the reactivity of nanosized vanadium oxide cluster ions toward C6H6, which is not common in cluster science. In the reactions with benzene, the small and large reactive vanadium oxide cations show similar reactivity of hydroxyl radicals (OH•) toward C6H6 at higher and lower temperatures, respectively; different numbers of vibrational degrees of freedom and the released energy during the formation of adduct complexes can explain this intriguing correlation. The reactions investigated herein might be used as the models of how to realize the partial oxidation of benzene to phenol in a single step, and the observed mechanisms are helpful to understand the corresponding heterogeneous reactions, such as those over vanadium oxide aerosols and vanadium oxide catalysts.


Asunto(s)
Benceno/química , Nanoestructuras/química , Óxidos/química , Fenoles/síntesis química , Vanadio/química , Aniones/química , Cationes/química , Hidroxilación , Modelos Químicos , Estructura Molecular , Teoría Cuántica , Temperatura
5.
Chemistry ; 24(22): 5920-5926, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29424048

RESUMEN

The mass-selected Fe2 O+ cation mediated propane oxidation by O2 was investigated by mass spectrometry and density functional theory calculations. In the reaction of Fe2 O+ with C3 H8 , H2 was liberated by C-H bond activation to give Fe2 OC3 H6+ . Interestingly, when a mixture of C3 H8 /O2 was introduced into the reactor, an intense signal that corresponded to the Fe2 O2+ cation was present; the experiments indicated that O2 was activated in its reaction with Fe2 O(C3 H6 )+ to give Fe2 O2+ and C3 H6 O (acetone or propanal). A Langmuir-Hinshelwood-like mechanism was adopted in the propane oxidation reaction by O2 on gas-phase Fe2 O+ cations. In comparison with the absence of Fe2 O2+ in the reaction of Fe2 O+ with O2 , the ligand effect of C3 H6 on Fe2 OC3 H6+ is important in the oxygen activation reaction. The theoretical results are consistent with the experimental observations. The propane oxidation by O2 in the presence of Fe2 O+ might be applied as a model for alkane and O2 activations over iron oxide catalysts, and the mechanisms and kinetic data are useful for understanding corresponding heterogeneous reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...