Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Colloid Interface Sci ; 667: 199-211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636222

RESUMEN

The catalytic performance of immobilized lipase is greatly influenced by functional support, which attracts growing interest for designing supports to achieve their promotive catalytic activity. Many lipases bind strongly to hydrophobic surfaces where they undergo interfacial activation. Herein, the behavioral differences of lipases with distinct lid structures on interfaces of varying hydrophobicity levels were firstly investigated by molecular simulations. It was found that a reasonable hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation. Building on these findings, a novel "nest"-like superhydrophobic ZIFs (ZIFN) composed of hydrophobic ligands was prepared for the first time and used to immobilize lipase from Aspergillus oryzae (AOL@ZIFN). The AOL@ZIFN exhibited 2.0-folds higher activity than free lipase in the hydrolysis of p-Nitrophenyl palmitate (p-NPP). Especially, the modification of superhydrophobic ZIFN with an appropriate amount of hydrophilic tannic acid can significantly improve the activity of the immobilized lipase (AOL@ZIFN-TA). The AOL@ZIFN-TA exhibited 30-folds higher activity than free lipase, and still maintained 82% of its initial activity after 5 consecutive cycles, indicating good reusability. These results demonstrated that nanomaterials with rational arrangement of the hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation and improve its activity, displaying the potential of the extensive application.


Asunto(s)
Enzimas Inmovilizadas , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa , Propiedades de Superficie , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Aspergillus oryzae/enzimología , Simulación de Dinámica Molecular , Hidrólisis , Nanoestructuras/química , Tamaño de la Partícula
2.
Small ; : e2311588, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497502

RESUMEN

The multi-level structure is a strategy to enhance the mechanical properties of dung beetle leg joints. Under external loads, the microstructure facilitates energy dissipation and prevents crack extension. The macrostructure aids in transferring the load to more reliable parts. The connection established by the two hemispheres is present in the dung beetle leg joint. The micron-layered and nanoscale crystal structures further constitute the leg joint with excellent mechanical properties. The maximum compression fracture force is ≈101000 times the weight of the leg. Here, the structural design within the dung beetle leg joints and reveal the resulting mechanical response and enhancement mechanisms is determined. A series of beetle leg joints where the macrostructure and microstructure of the dung beetle leg provide mechanical strength at critical strains while avoiding catastrophic failure by transferring the load from the joint to the exoskeleton of the femur is highlighted. Nanocrystalline structures and fiber layers contribute to crack propagation of the exoskeleton. Based on this, the bionic joint with multi-level structures using resin and conducted a series of tests to verify their effectiveness is prepared. This study provides a new idea for designing and optimizing high-load joints in engineering.

3.
Int J Biol Macromol ; 263(Pt 2): 130381, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395291

RESUMEN

Enzyme immobilization usually make use of nanomaterials to hold up biocatalysis stability in various unamiable reaction conditions, but also lead large discount on enzyme activity. Thus, there are abundant researches focus on how to deal with the relation of enzyme molecules and supports. In this work, a new state of highly active enzymes has been established through facile and novel in situ immobilization and soft template removal method to construct enzyme contained hollow silica nanosphere (catalase@HSN) biocatalysts where enzymes in the cavity exhibit "immobilized but not rigid state". The obtained catalase@HSN was characterized by transmission electron microscopy, scanning electron microscopy and confocal laser scanning microscopy et al. Catalase@HSN exhibits excellent activity (about 80 % activity recovery rate) and stability suffers from extreme pH, temperature, and organic solvents. Moreover, the reusability and storage stability of catalase@HSN also are satisfactory. This proposed strategy provides a facile method for preparing biocatalysts under mild conditions, facilitating the applications of immobilized enzyme in the fields of real biocatalytic industry with high apparent activity and passable stability.


Asunto(s)
Nanosferas , Dióxido de Silicio , Catalasa/metabolismo , Dióxido de Silicio/química , Nanosferas/química , Enzimas Inmovilizadas/química , Biocatálisis , Estabilidad de Enzimas
5.
J Colloid Interface Sci ; 650(Pt B): 1833-1841, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37515973

RESUMEN

The combination of chemo- and biocatalysts to perform one-pot synthetic route has presented great challenges for decades. Herein, glutamate oxidase (GLOX) and trimanganese tetraoxide (Mn3O4) nanocrystals were combined for the first time by one-step biomineralization to construct a mimic multi-enzyme system (GLOX@Mn3O4) for chemoenzymatic synthesis of α­ketoglutaric acid (α­KG). Mn3O4 not only served as a support for the enzyme immobilization, but also contributed its catalytic activity to co-operate with natural enzymes for the cascade reactions. The as-synthesized chemo-enzyme catalysts with directly contacted catalytic sites of the enzyme and inorganic catalyst maximizes the substrate channeling effffects for in situ rapid decomposition of the oxidative intermediate, H2O2, during the enzymatic oxidation of sodium glutamate, thus relieving the inhibition of H2O2 accumulation for GLOX. Benefiting from the excellent stability and reusability of GLOX@Mn3O4, a nearly 100% conversion (99.7%) of l-glutamate to α-KG was achieved, over 4.7 times higher than that of the free GLOX system (21.2%). This work provides a feasibility for constructing a high-performance chemo-enzyme catalyst for cascade catalysis, especially for those reactions with toxic intermediates.


Asunto(s)
Biomimética , Ácidos Cetoglutáricos , Peróxido de Hidrógeno/química , Catálisis , Glutamatos
7.
Int J Biol Macromol ; 242(Pt 2): 124807, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178887

RESUMEN

The hydrolysis of natural oils (vegetable oils and fats) by lipase has significant applications in food and medicine. However, free lipases are usually sensitive to temperature, pH and chemical reagents in aqueous solutions, which hinders their widespread industrial application. Excitingly, immobilized lipases have been widely reported to overcome these problems. Herein, inspired by lipase interface activation, a hydrophobic Zr-MOF (UiO-66-NH2-OA) with oleic acid was synthesized for the first time in an emulsion consisting of oleic acid and water, and the Aspergillus oryzae lipase (AOL) was immobilized onto the UiO-66-NH2-OA through hydrophobic interaction and electrostatic interaction to obtain immobilized lipase (AOL/UiO-66-NH2-OA). 1H NMR and FT-IR data indicated that oleic acid was conjugated with the 2-amino-1,4-benzene dicarboxylate (BDC-NH2) by amidation reaction. As a result, the Vmax and Kcat values of AOL/UiO-66-NH2-OA were 179.61 µM﹒min-1 and 8.27 s-1, which were 8.56 and 12.92 times higher than those of the free enzyme, respectively, due to the interfacial activation. After treated at 70 °C for 120 min, the immobilized lipase maintained 52 % of its original activity, but free AOL only retained 15 %. Significantly, the yield of fatty acids by the immobilized lipase reached 98.3 % and still exceeded 82 % after seven times of recycling.


Asunto(s)
Lipasa , Ácido Oléico , Lipasa/química , Hidrólisis , Espectroscopía Infrarroja por Transformada de Fourier , Enzimas Inmovilizadas/química , Aceites de Plantas/química , Ácidos Grasos Insaturados , Agua , Interacciones Hidrofóbicas e Hidrofílicas
9.
Crit Rev Biotechnol ; : 1-24, 2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37032548

RESUMEN

Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.

10.
Int J Biol Macromol ; 237: 123968, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906204

RESUMEN

Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.


Asunto(s)
Enzimas Inmovilizadas , Estructuras Metalorgánicas , Enzimas Inmovilizadas/química , Biocatálisis , Estructuras Metalorgánicas/química , Biotecnología , Fenómenos Magnéticos
11.
J Environ Manage ; 323: 116197, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126591

RESUMEN

Baker's yeast industries generate highly polluted effluents, especially the cell free broth (i.e., vinasse) characterized by high chemical oxygen demand, nitrogen, and salts. In this work, it was found that the residual by-products (i.e., ethanol and acetic acid) and salts in the vinasse severely inhibited the cell growth, which hindered the reuse of the vinasse for the production of Saccharomyces cerevisiae. Through optimizing a suitable control strategy, the productions of ethanol and acetic acid were eliminated. Then, a nanofiltration membrane (i.e., NF5) was preferred for preliminarily and simultaneously separating and concentrating valuable molecules (i.e., invertase, food grade proteins and pigments) in the vinasse, and the main fouling mechanism was cake layer formation. Subsequently, a reverse osmosis membrane (RO) was suitable to separate and concentrate salts in the NF5 permeate, where the membrane fouling was negligible. Finally, the RO permeate was successfully reused for the production of S. cerevisiae. In addition, without calculating the benefit from the recovery of the valuable molecules, the cost of the integrated process can be decreased by 59.8% compared with the sole triple effect evaporation. Meanwhile, the volume of the fresh water used in the fermentation process can be decreased by 68.8%. Thus, it is a sustainable process for the cleaner production of baker's yeast using the integrated fermentation and membrane separation process.


Asunto(s)
Saccharomyces cerevisiae , Administración de Residuos , Ácido Acético/metabolismo , Etanol/metabolismo , Fermentación , Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Sales (Química)/metabolismo , beta-Fructofuranosidasa/metabolismo
12.
Materials (Basel) ; 15(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35629499

RESUMEN

The (Pt/YSZ)/YSZ sensor unit is the basic component of the NOx sensor, which can detect the emission of nitrogen oxides in exhaust fumes and optimize the fuel combustion process. In this work, the effect of sintering temperature on adhesion property and electrochemical activity of Pt/YSZ electrode was investigated. Pt/YSZ electrodes were prepared at different sintering temperatures. The microstructure of the Pt/YSZ electrodes, as well as the interface between Pt/YSZ electrode and YSZ electrolyte, were observed by SEM. Chronoamperometry, linear scan voltammetry, and AC impedance were tested by the electrochemical workstation. The results show that increasing the sintering temperature (≤1500 °C) helped to improve adhesion property and electrochemical activity of the Pt/YSZ electrode, which benefited from the formation of the porous structure of the Pt/YSZ electrode. For the (Pt/YSZ) electrode/YSZ electrolyte system, O2- in YSZ is converted into chemisorbed O2 on Pt/YSZ, which is desorbed into the gas phase in the form of molecular oxygen; this process could be the rate-controlling step of the anodic reaction. Increasing the sintering temperature (≤1500 °C) could reduce the reaction activation energy of the Pt/YSZ electrode. The activation energy reaches the minimum value (1.02 eV) when the sintering temperature is 1500 °C.

13.
J Agric Food Chem ; 70(12): 3785-3794, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35302358

RESUMEN

The hybrid coupling of biocatalysts and chemical catalysts plays a vital role in the fields of catalysis, sensing, and medical treatment due to the integrated advantages in the high activity of natural enzymes and the excellent stability of nanozymes. Herein, a new nanozyme/natural enzyme hybrid biosensor was established for ultrasensitive glutamate detection. The MIL-88B(Fe)-NH2 material with remarkable peroxidase mimic activity and stability was used as a nanozyme and carrier for immobilizing glutamate oxidase (GLOX) through Schiff base reaction to construct a chem-enzyme cascade detector (MIL-88B(Fe)-NH2@GLOX). The resultant MIL-88B(Fe)-NH2@GLOX exhibited a wide linear range (1-100 µM), with a low detection limit of 2.5 µM for glutamate detection. Furthermore, the MIL-88B(Fe)-NH2@GLOX displayed excellent reusability and storage stability. After repeated seven cycles, MIL-88B(Fe)-NH2-GLOX (GLOX was adsorbed on MIL-88B(Fe)-NH2) lost most of its activity, whereas MIL-88B(Fe)-NH2@GLOX still retained 69% of its initial activity. Meanwhile, MIL-88B(Fe)-NH2@GLOX maintained 60% of its initial activity after storage for 90 days, while free GLOX only retained 30% of its initial activity. This strategy of integrating MOF mimics and natural enzymes for cascade catalysis makes it possible to design an efficient and stable chemo-enzyme composite catalysts, which are promising for applications in biosensing and biomimetic catalysis.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Biomimética , Catálisis , Ácido Glutámico
15.
J Colloid Interface Sci ; 610: 709-718, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34863543

RESUMEN

Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.


Asunto(s)
Estructuras Metalorgánicas , Zeolitas , Enzimas Inmovilizadas , Porosidad , Sulfatos
16.
Gels ; 7(4)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34842692

RESUMEN

In recent years, polymeric hydrogels have appeared promising matrices for enzyme immobilization to design, signify and expand bio-catalysis engineering. Therefore, the development and deployment of polymeric supports in the form of hydrogels and other robust geometries are continuously growing to green the twenty-first-century bio-catalysis. Furthermore, adequately fabricated polymeric hydrogel materials offer numerous advantages that shield pristine enzymes from denaturation under harsh reaction environments. For instance, cross-linking modulation of hydrogels, distinct rheological behavior, tunable surface entities along with elasticity and mesh size, larger surface-volume area, and hydrogels' mechanical cushioning attributes are of supreme interest makes them the ideal candidate for enzyme immobilization. Furthermore, suitable coordination of polymeric hydrogels with requisite enzyme fraction enables pronounced loading, elevated biocatalytic activity, and exceptional stability. Additionally, the unique catalytic harmony of enzyme-loaded polymeric hydrogels offers numerous applications, such as hydrogels as immobilization matrix, bio-catalysis, sensing, detection and monitoring, tissue engineering, wound healing, and drug delivery applications. In this review, we spotlight the applied perspective of enzyme-loaded polymeric hydrogels with recent and relevant examples. The work also signifies the combined use of multienzyme systems and the future directions that should be attempted in this field.

17.
Front Bioeng Biotechnol ; 9: 698022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395404

RESUMEN

ε-Polylysine (ε-PL), a natural preservative with broad-spectrum antimicrobial activity, has been widely used as a green food additive, and it is now mainly produced by Streptomyces in industry. In the previous study, strain 6#-7 of high-yield ε-PL was obtained from the original strain TUST by mutagenesis. However, the biosynthesis mechanism of ε-PL in 6#-7 is still unclear. In this study, the metabolomic analyses of the biosynthesis mechanism of ε-PL in both strains are investigated. Results show that the difference in metabolisms between TUST and 6#-7 is significant. Based on the results of both metabolomic and enzymatic activities, a metabolic regulation mechanism of the high-yield strain is revealed. The transport and absorption capacity for glucose of 6#-7 is improved. The enzymatic activity benefits ε-PL synthesis, such as pyruvate kinase and aspartokinase, is strengthened. On the contrary, the activity of homoserine dehydrogenase in the branched-chain pathways is decreased. Meanwhile, the increase of trehalose, glutamic acid, etc. makes 6#-7 more resistant to ε-PL. Thus, the ability of the mutagenized strain 6#-7 to synthesize ε-PL is enhanced, and it can produce more ε-PLs compared with the original strain. For the first time, the metabolomic analysis of the biosynthesis mechanism of ε-PL in the high-yield strain 6#-7 is investigated, and a possible mechanism is then revealed. These findings provide a theoretical basis for further improving the production of ε-PL.

18.
J Colloid Interface Sci ; 602: 426-436, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34144301

RESUMEN

Inspired by the interfacial catalysis of lipase, Herein, the hydrophobic ZIF-L coated with polydimethylsiloxane (PDMS) were prepared by chemical vapor deposition (CVD) and used to immobilize lipase from Aspergillus oryzae (AOL) for biodiesel production. The results showed that the PDMS coating enhanced the stability of ZIF-8 and ZIF-L in PBS. Immobilization efficiency of AOL on PDMS-modified ZIF-L was 96% under optimized conditions. The resultant immobilized lipase (AOL@PDMS-ZIF-L) exhibited higher activity recovery (430%) than AOL@ZIF-L. Meanwhile, compared with free lipase, the AOL@PDMS-ZIF-L exhibited better storage stability and thermal stability. After 150 days of storage, the free lipase retained only 20% of its original activity of hydrolyzing p-NPP, while the AOL@PDMS-ZIF-L still retained 90% of its original activity. The biodiesel yield catalyzed from soybean oil by free lipase was only 69%, However, the biodiesel yield by AOL@PDMS-ZIF-L reached 94%, and could still be maintained at 85% even after 5 consecutive cycles. It is believed that this convenient and versatile strategy has great promise in the important fields of immobilized lipase on MOF for biodiesel production.


Asunto(s)
Lipasa , Estructuras Metalorgánicas , Biocombustibles , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/metabolismo
19.
Food Res Int ; 140: 109979, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33648214

RESUMEN

Pectinases are the emerging enzymes of the biotechnology industry with a 25% share in the worldwide food and beverage enzyme market. These are green and eco-friendly tools of nature and hold a prominent place among the commercially produced enzymes. Pectinases exhibit applications in various industrial bioprocesses, such as clarification of fruit juices and wine, degumming, and retting of plant fibers, extraction of antioxidants and oil, fermentation of tea/coffee, wastewater remediation, modification of pectin-laden agro-industrial waste materials for high-value products biosynthesis, manufacture of cellulose fibres, scouring, bleaching, and size reduction of fabric, cellulosic biomass pretreatment for bioethanol production, etc. Nevertheless, like other enzymes, pectinases also face the challenges of low operational stability, recoverability, and recyclability. To address the above-mentioned problems, enzyme immobilization has become an eminently promising approach to improve their thermal stability and catalytic characteristics. Immobilization facilitates easy recovery and recycling of the biocatalysts multiple times, leading to enhanced performance and commercial feasibility.In this review, we illustrate recent developments on the immobilization of pectinolytic enzymes using polymers and nanostructured materials-based carrier supports to constitute novel biocatalytic systems for industrial exploitability. The first section reviewed the immobilization of pectinases on polymers-based supports (ca-alginate, chitosan, agar-agar, hybrid polymers) as a host matrix to construct robust pectinases-based biocatalytic systems. The second half covers nanostructured supports (nano-silica, magnetic nanostructures, hybrid nanoflowers, dual-responsive polymeric nanocarriers, montmorillonite clay), and cross-linked enzyme aggregates for enzyme immobilization. The biotechnological applications of the resulted immobilized robust pectinases-based biocatalytic systems are also meticulously vetted. Finally, the concluding remarks and future recommendations are also given.


Asunto(s)
Nanoestructuras , Poligalacturonasa , Biocatálisis , Biotecnología , Enzimas Inmovilizadas/metabolismo , Poligalacturonasa/metabolismo
20.
J Colloid Interface Sci ; 590: 436-445, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33561593

RESUMEN

Metal-organic frameworks (MOFs) have been emerged as a promising support for immobilizing enzymes owing to the tunable porosity, high surface area, and structural diversity. However, most of these possess nanometer size and small pores, which are difficult to recover them from the reaction medium and present low immobilization efficiency and protein loading capacity, and high substrate diffusion limitations. Herein, a novel magnetic amino-functionalized zeolitic imidazolate framework-8 (ZIF-8) with 3D highly ordered macroporous structure was synthesized using the assembled polystyrene (PS) nanosphere monoliths as a template. Subsequently, catalase (CAT) molecules were immobilized on the surface of macroporous magnetic ZIF-8 and inside the macropores by precipitation, covalent binding and cross-linking. The resultant immobilized CAT showed high immobilization efficiency (58%) and protein loading capacity (29%), leading to 500% higher activity than the immobilized CAT on ZIF-8 (CAT/ZIF-8). Meanwhile, the immobilized CAT could be easily recovered with a magnet without obvious activity loss. The traditional CAT/ZIF-8 lost its activity after 6 cycles, whereas, the immobilized CAT retained 90% activity of its initial activity after reusing for 8 cycles, indicating excellent reusability. In conclusion, this study provides a facile and efficient approach to immobilize enzymes on/in MOFs with enhanced activity and excellent recyclability.


Asunto(s)
Estructuras Metalorgánicas , Zeolitas , Catalasa , Enzimas Inmovilizadas , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...