Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 2): 130845, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503376

RESUMEN

Endometrial fibrosis leads to the destruction of endometrial function and affects reproductive performance. However, mechanisms underlying the development of endometrial fibrosis in sheep remain unclear. We use transcriptomic, proteomic, and metabolomic studies to reveal the formation mechanisms of endometrial fibrosis. The results showed that the fibrotic endometrial tissue phenotype presented fewer glands, accompanied by collagen deposition. Transcriptomic results indicated alterations in genes associated with the synthesis and degradation of extracellular matrix components, which alter metabolite homeostasis, especially in glycerophospholipid metabolism. Moreover, differentially expressed metabolites may play regulatory roles in key metabolic processes during fibrogenesis, including protein digestion and absorption, and amino acid synthesis. Affected by the aberrant genes, protein levels related to the extracellular matrix components were altered. In addition, based on Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes, metabolites and proteins, amino acid biosynthesis, glutathione, glycerophospholipid, arginine and proline metabolism, and cell adhesion are closely associated with fibrogenesis. Finally, we analyzed the dynamic changes in serum differential metabolites at different time points during fibrosis. Taken together, fibrosis development is related to metabolic obstacles in extracellular matrix synthesis and degradation triggered by disturbed gene and protein levels.


Asunto(s)
Multiómica , Proteómica , Animales , Ovinos , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrosis , Transcriptoma , Glicerofosfolípidos/metabolismo , Aminoácidos/metabolismo
2.
Food Res Int ; 179: 114021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342541

RESUMEN

Sheep milk is rich in fat, protein, vitamins and minerals and is also one of the most important sources of natural bioactives. Several biopeptides in sheep milk have been reported to possess antibacterial, antiviral and anti-inflammatory properties, and they may prevent type 2 diabetes (T2D), disease and cancer. However, the precise mechanism(s) underlying the protective role of sheep milk against T2D development remains unclear. Therefore, in the current study, we investigated the effect of sheep milk on insulin resistance and glucose intolerance in high-fat diet (HFD)-fed mice, by conducting intraperitoneal glucose tolerance tests, metabolic cage studies, genomic sequencing, polymerase chain reaction, and biochemical assays. Hyperinsulinemic-euglycemic clamp-based experiments revealed that mice consuming sheep milk exhibited lower hepatic glucose production than mice in the control group. These findings further elucidate the mechanism by which dietary supplementation with sheep milk alleviates HFD-induced systemic glucose intolerance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Resistencia a la Insulina , Ovinos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/prevención & control , Diabetes Mellitus Tipo 2/prevención & control , Leche/metabolismo
3.
mSystems ; 9(2): e0095323, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38193712

RESUMEN

Transplant of donor microbiota can significantly alter the structure of the host's intestinal microbiota and alleviate early weaning stress. Screening for alternative-resistant products by transplanting fecal bacteria from healthy lambs is a current research trend in the livestock industry. In the present study, fecal microbiota transplantation was performed in lambs with diarrhea during early weaning. The transplanted fecal microbiota greatly reduced the diarrhea and serum inflammatory factor levels caused by early weaning. Transcriptome sequencing revealed that fecal microbiota transplantation alleviated colonic inflammation and increased the expression of colonic ion transport proteins. In addition, the levels of Streptococcus, Enterococcus, and Escherichia Shigella decreased in the jejunum, cecum, and colon of the lambs; meanwhile, the levels of Bifidobacterium and multiple secondary bile acids, such as ursodeoxycholic acid, increased in the colon. Furthermore, the abundance of Bifidobacterium was significantly negatively correlated with the diarrhea index. The fecal microbiota transplantation reshaped the intestinal microbiota of early-weaned lambs, protected the intestinal physiology and immune barrier, and reduced weaning stress. In addition to making available bacteriological products for controlling intestinal inflammation in young lambs, this study offers a theoretical framework and technical system for the mechanisms by which microbiota transplantation regulates intestinal health in young lambs.IMPORTANCEBefore weaning, the digestive system of lambs is not well developed; hence, its resistance to infectious diseases is weak. Under intensive feeding systems, lambs can easily be stressed and the risk of bacterial infection is high, which causes diarrhea, which in turn may cause mortality and significant economic losses to the livestock industry. With the elimination of antibiotics in animal feed, the incidence of mortality due to intestinal illnesses in lambs has gradually increased. There are several types of probiotics routinely used in young animals, but the effects and processes of their usage have only been assessed in monogastric animals. The lack of data on ruminants, particularly sheep, has severely hampered the process of efficient and healthy sheep breeding. Therefore, there is an urgent need to identify effective and safe functional supplements for lambs.


Asunto(s)
Suplementos Dietéticos , Multiómica , Animales , Ovinos , Destete , Diarrea/terapia , Inflamación
4.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240097

RESUMEN

The accumulation of ovarian granulosa cell (GC) apoptosis underlies follicular atresia. By comparing the previous sequencing results, miR-486 was found to be differentially expressed at higher levels in the monotocous goat than in the polytocous goat. Unfortunately, the miRNA-mediated mechanisms by which the GC fate is regulated are unknown in Guanzhong dairy goats. Therefore, we investigated miR-486 expression in small and large follicles, as well as its impact on normal GC survival, apoptosis and autophagy in vitro. Here, we identified and characterized miR-486 interaction with Ser/Arg-rich splicing factor 3 (SRSF3) using luciferase reporter analysis, detecting its role in GC survival, apoptosis and autophagy regulation through qRT-PCR, Western blot, CCK-8, EdU, flow cytometry, mitochondrial membrane potential and monodansylcadaverine, etc. Our findings revealed prominent effects of miR-486 in the regulation of GC survival, apoptosis and autophagy by targeting SRSF3, which might explain the high differential expression of miR-486 in the ovaries of monotocous dairy goats. In summary, this study aimed to reveal the underlying molecular mechanism of miR-486 regulation on GC function and its effect on ovarian follicle atresia in dairy goats, as well as the functional interpretation of the downstream target gene SRSF3.


Asunto(s)
Atresia Folicular , MicroARNs , Animales , Femenino , Atresia Folicular/genética , Células de la Granulosa/metabolismo , MicroARNs/metabolismo , Apoptosis/genética , Cabras/fisiología , Autofagia/genética
5.
Anim Biotechnol ; 34(4): 1314-1323, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34985398

RESUMEN

Litter size is a critical economic trait in livestock, but only a few studies have focused on associated indel mutations in BMPR1B, a key regulator of ovulation and litter size in sheep. We evaluated the effects of BMPR1B mutations on the reproductive performance of sheep. We used Hu, East Friesian, and East Friesian/Hu crossbred sheep as experimental subjects and identified a novel 90 bp deletion in BMPR1B, which coincides with the c.746A > G (FecB mutation) genotype. The correlation between the two loci and litter size was then evaluated. We identified three genotypes for the Del-90bp locus, namely, II, ID, and DD, and three genotypes for the c.746A > G locus, namely ++, B+, and BB. Both Del-90bp and c.746A > G significantly affected the litter size of Hu and East Friesian/Hu crossbred sheep. Linkage disequilibrium analysis revealed a strong linkage disequilibrium between these loci in Hu sheep and the F1 population (r2 > 0.33), which suggests that detecting this 90 bp deletion might be a simple method to identify the likely carriers of c.746A > G. However, the function of this 90-bp deletion still needs further exploration. We provide genetic data that can be used as a reference for the breeding of improved prolific traits in sheep.


Asunto(s)
Reproducción , Embarazo , Femenino , Ovinos/genética , Animales , Tamaño de la Camada/genética , Emparejamiento Base , Mutación , Genotipo
6.
Genes (Basel) ; 11(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906580

RESUMEN

The endometrium undergoes a series of complex changes to form a receptive endometrium (RE) that allows the embryo to be implanted. The inability to establish endometrial receptivity of livestock causes embryo implantation failure and considerable losses to animal husbandry. MicroRNAs (miRNAs) are a class of noncoding RNAs. Studies have found that miRNAs can regulate many critical physiological processes, including the establishment of RE during embryo implantation. miR-184 is highly expressed in the endometrial receptive period of dairy goats. This study aimed to explore the effect of miR-184 on endometrial epithelial cell (EEC) apoptosis and RE establishment. Stanniocalcin2 (STC2) is a direct target of miR-184, and miR-184 decreases the expression of STC2 in dairy goat EECs. miR-184 can activate EECs apoptosis through the RAS/RAF/MEK/ERK pathway. Additionally, miR-184 increases the expression levels of RE marker genes, such as forkhead box M1 (FOXM1) and vascular endothelial growth factor (VEGF). These findings indicate that miR-184 promotes the apoptosis of endometrial epithelial cells in dairy goats by downregulating STC2 via the RAS/RAF/MEK/ERK pathway, and that it may also regulate the establishment of RE in dairy goats.


Asunto(s)
Apoptosis , Endometrio/patología , Células Epiteliales/patología , Glicoproteínas/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Animales , Endometrio/metabolismo , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Glicoproteínas/genética , Cabras , Quinasas raf/genética , Proteínas ras/genética
7.
J Cell Physiol ; 235(12): 10051-10067, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32474960

RESUMEN

microRNAs (miRNAs) and circular RNAs (circRNAs) are important for endometrial receptivity establishment and embryo implantation in mammals. miR-34a and miR-34c are highly expressed in caprine receptive endometrium (RE). Herein, the functions and mechanisms of miR-34a/c in caprine endometrial epithelial cell (CEEC) apoptosis and RE establishment were investigated. miR-34a/c downregulated the expression level of centrosomal protein 55 (CEP55) and were sponged by circRNA8073 (circ-8073), thereby exhibiting a negative interaction in CEEC. miR-34a/c induced CEEC apoptosis by targeting circ-8073/CEP55 through the regulation of the RAS/RAF/MEK/ERK and phosphoitide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways. Positive and negative feedback loops and cross-talk were documented between the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. miR-34a/c regulated the levels of RE marker genes, including forkhead box M1, vascular endothelial growth factor, and osteopontin (OPN). These results suggest that miR-34a/c not only induce CEEC apoptosis by binding to circ-8073 and CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways, but may also regulate RE establishment in dairy goats.


Asunto(s)
Apoptosis/genética , Implantación del Embrión/genética , MicroARNs/genética , ARN Circular/genética , Animales , Proteínas de Ciclo Celular/genética , Endometrio/crecimiento & desarrollo , Endometrio/metabolismo , Células Epiteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Cabras/genética , Cabras/crecimiento & desarrollo , Humanos , Transducción de Señal/genética , Homóloga LST8 de la Proteína Asociada al mTOR , Quinasas raf/genética , Proteínas ras/genética
8.
Vet Med Sci ; 6(2): 196-203, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31782264

RESUMEN

Transcriptomics is an established powerful tool to identify potential mRNAs and ncRNAs (non-coding RNAs) for endometrial receptivity. In this study, the goat endometrium at estrus day 5 (ED5) and estrus day 15 (ED15) were selected to systematically analyse the differential expressed genes (DEGs) what were induced by the embryo. There were 1,847 genes which were significantly differential expressed in endometrium induced by the embryo at ED5, and 1,346 at ED15 (p-value < .05). Secreted phosphoprotein 1 (SPP) was the responsive genes for embryo in the goat endometrium during estrus cycle, neurotensis (NTS) and pleiotrophin (PTN) were the responsive genes for embryo in the goat endometrium at ED5, Testin (TES) and Phosphate and Tension Homology Deleted on Chromsome ten (PTEN) at ED15. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analysis revealed cytoplasm and Endocytosis were indispensable for the endometrium development in dairy goat. In a word, this resulting view of the transcriptome greatly uncovered the global trends in mRNAs expression induced by the embryo in the endometrium of dairy goats.


Asunto(s)
Embrión de Mamíferos/fisiología , Endometrio/metabolismo , Expresión Génica , Cabras/genética , ARN Mensajero/genética , Animales , Femenino , Cabras/metabolismo , ARN Mensajero/metabolismo , Transcriptoma
9.
J Anim Sci Biotechnol ; 10: 34, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31049198

RESUMEN

BACKGROUND: Recent studies have revealed that noncoding RNAs play important regulatory roles in the formation of endometrial receptivity. Circular RNAs (circRNAs) are a universally expressed noncoding RNA species that have been recently proposed to act as miRNA sponges that directly regulate expression of target genes or parental genes. RESULTS: We used Illumina Solexa technology to analyze the expression profiles of circRNAs in the endometrium from three goats at gestational day 5 (pre-receptive endometrium, PE) and three goats at gestational day 15 (receptive endometrium, RE). Overall, 21,813 circRNAs were identified, of which 5,925 circRNAs were specific to the RE and 9,078 were specific to the PE, which suggested high stage-specificity. Further analysis found 334 differentially expressed circRNAs in the RE compared with PE (P < 0.05). The analysis of the circRNA-miRNA interaction network further supported the idea that circRNAs act as miRNA sponges to regulate gene expression. Moreover, some circRNAs were regulated by estrogen (E2)/progesterone (P4) in endometrial epithelium cell lines (EECs) and endometrial stromal cell line (ESCs), and each circRNA molecule exhibited unique regulation characteristics with respect to E2 and P4. CONCLUSIONS: These data provide an endometrium circRNA expression atlas corresponding to the biology of the goat receptive endometrium during embryo implantation.

10.
Mol Ther Nucleic Acids ; 14: 262-273, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30654188

RESUMEN

Development of the receptive endometrium (RE) from the pre-receptive endometrium (PE) is essential for embryo implantation, but its molecular mechanisms have not been fully understood. In this study, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks were constructed to explore the functions of potential competing endogenous RNAs (ceRNA) during the development of RE in dairy goats. We observed that circRNA8073 (ciR8073) decreased the levels of miR-181a by acting as a miRNA sponge. This effect indirectly increased the expression of neurotensin in endometrial epithelial cells (EECs). Neurotensin then inhibited EEC apoptosis by increasing the expression of BCL-2/BAX in favor of BCL-2 via the MAPK pathway and also induced increased expression of leukemia-inhibitory factor, cyclo-oxygenase 2, vascular endothelial growth factor A, and homeobox A10. We have thus identified a ciR8073-miR181a-neurotensin pathway in the endometrium of dairy goats. Through this pathway, ciR8073 functions as a ceRNA that sequesters miR-181a, thereby protecting neurotensin transcripts from miR-181a-mediated suppression in EECs.

11.
J Cell Physiol ; 234(4): 4754-4767, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30317576

RESUMEN

Despite the fact that long noncoding RNAs (lncRNAs) play roles in almost all biological processes, little is known about their biological function in the endometrium during the formation of endometrial receptivity. In this study, a comprehensive analysis of lncRNAs in goat endometrial tissues on Day 5 (prereceptive endometrium, PE) and Day 15 (receptive endometrium, RE) of pregnancy was performed by using RNA-Seq. As a result, 668 differentially expressed lncRNAs (DELs) were found between the PE and RE. Further study showed that lncRNA882, regulated by estrogen (E2) and progestin (P4), could act as competing endogenous RNAs (ceRNAs) for miR-15b, which inhibited the expression of transforming growth factor-b-activated kinase 1 binding protein 3 (TAB3) and then indirectly regulated the level of leukemia inhibitory factor (LIF). This was helpful for the formation of endometrial receptivity in dairy goats. In conclusion, we elucidated the endometrium lncRNA profiles of PE and RE in dairy goats; lncRNA882 acted as a ceRNA for miR-15b and then indirectly regulated the level of LIF in goat endometrial epithelium cells. Thus, this study helped us to better understand the molecular regulation of endometrial receptivity in dairy goats.


Asunto(s)
Implantación del Embrión , Endometrio/metabolismo , Células Epiteliales/metabolismo , Factor Inhibidor de Leucemia/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Industria Lechera , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Cabras , Factor Inhibidor de Leucemia/genética , MicroARNs/genética , Embarazo , ARN Largo no Codificante/genética , Transducción de Señal
12.
Reprod Fertil Dev ; 30(12): 1759-1769, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29983139

RESUMEN

Circular RNAs (circRNAs) have been found to play important functional roles in epigenetic regulation under certain physiological and pathological conditions. However, knowledge of circRNAs during the development of receptive endometrium (RE) from pre-RE is limited. In the RE of dairy goats, higher circRNA-9119 levels, with lower miR-26a and higher prostaglandin-endoperoxide synthase 2 (PTGS2) levels, were detected. Further study showed that circRNA-9119 decreased levels of miR-26a by acting as a microRNA sponge, and that miR-26a downregulated the expression of PTGS2 via the predicted target site in endometrial epithelial cells (EECs) of dairy goats in vitro. In this way, circRNA-9119 functioned as a competing endogenous RNAs (ceRNA) that sequestered miR-26a, thereby protecting PTGS2 transcripts from miR-26a-mediated suppression in dairy goat EECs in vitro. Furthermore, PTGS2 participated in the regulation of some protein markers for endometrial receptivity in dairy goat EECs in vitro. Thus, a circRNA-9119-miR-26a-PTGS2 pathway in the endometrium was identified, and modulation of circRNA-9119-miR-26a-PTGS2 expression in EECs may emerge as a potential target to regulate the development of RE.


Asunto(s)
Ciclooxigenasa 2/genética , Endometrio/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , ARN/genética , Animales , Ciclooxigenasa 2/metabolismo , Implantación del Embrión/genética , Endometrio/citología , Epigénesis Genética , Células Epiteliales/citología , Femenino , Cabras , MicroARNs/metabolismo , ARN/metabolismo , ARN Circular , Transducción de Señal/fisiología
13.
Biochim Biophys Acta Mol Cell Res ; 1865(8): 1130-1147, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29800603

RESUMEN

Circular RNAs (circRNAs) are a large class of endogenous non-coding RNAs that function as regulators in various cells and tissues. Here, the function and mechanism of circRNA8073 (Circ-8073) on endometrial epithelial cells (EECs) and the development of endometrial receptivity were investigated in dairy goats. Circ-8073 could bind to and inhibit miR-449a activity. Circ-8073 binding to the target site of miR-449a had a negative feedback relationship. Centrosomal protein55 (CEP55) was a direct target gene of miR-449a, and Circ-8073 could increase the expression levels of CEP55 by sponging miR-449a in EECs in vitro. Circ-8073/miR-449a/CEP55 could promote EECs proliferation via the PI3K/AKT/mTOR pathway. In addition, CEP55 could regulate the expression levels of vascular endothelial growth factor (VEGF) and forkhead box M1 (FOXM1) in EECs, which contributed to the development of endometrial receptivity. These findings showed that Circ-8073 regulated CEP55 by sponging miR-449a to promote EEC proliferation via the PI3K/AKT/mTOR pathway, suggesting that it could function as a regulator in the development of endometrial receptivity in dairy goats.


Asunto(s)
Proteínas de Ciclo Celular/genética , Endometrio/citología , MicroARNs/genética , ARN/genética , Transducción de Señal , Animales , Proliferación Celular , Células Cultivadas , Endometrio/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Cabras , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular , Serina-Treonina Quinasas TOR/metabolismo
14.
J Cell Physiol ; 233(10): 6965-6974, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29693265

RESUMEN

Circular RNAs (circRNAs) in various tissues and cell types from mammalian sources have been studied. However, present knowledge on circRNAs in the development of pre-receptive endometrium (PE) in dairy goats is limited. In the pre-receptive endometrium of dairy goats, higher circRNA3175 (ciR3175) levels, lower miR-182 levels and higher Testin (TES) levels were detected. And ciR3175 could decreased the miR-182 levels by acting as a miRNA sponge, and miR-182 could down-regulated the expression level of TES via the predicted target site in endometrial epithelial cells (EECs) in vitro. Via this way, ciR3175 functioned as a competing endogenous RNAs (ceRNA) that sequestered miR-182, thereby protecting TES transcripts from miR-182-mediated suppression in EECs in vitro. Further, TES inhibited EECs apoptosis by decreasing the expression level of BCL-2/BAX via the MAPK pathway. Thus, a ciR3175-miR182-TES pathway in the endometrium was identified in EECs, and the modulation of which could emerge as a potential target in regulating the pre-receptive endometrium development in dairy goats.


Asunto(s)
Apoptosis/genética , Endometrio/metabolismo , Células Epiteliales/metabolismo , MicroARNs/genética , ARN/provisión & distribución , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación hacia Abajo , Femenino , Cabras/genética , ARN/genética , ARN Circular , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...