Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 255: 119189, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777293

RESUMEN

Cropping systems are considered the largest source of agricultural GHG emissions. Identifying key categories and factors affecting cropping systems is essential for reducing these emissions. Most studies have focused on the carbon budget of cropping systems from the perspective of a single crop or crop category. Comprehensive studies quantifying the carbon budget of diversified cropping systems, including farmland and garden crops, are still limited. This study aims to fill this gap by quantifying the carbon budget of diversified cropping systems, clarifying their carbon attributes, and identifying key crop categories and influencing factors within different classifications of the system. This study analyzed the carbon budget of a diversified cropping system consisting of 19 crops in Yunnan Province, southwestern China, using a crop-based net greenhouse gas balance methodology based on the "cradle-to-farm" life cycle idea. Crops were categorized into three levels of categories to assess the potential impact of categorization within the cropping system on its carbon balance. Results showed that Yunnan's diversified cropping system is a significant carbon sink, with net sequestration of 33.1 Mt CO2 eq, total emissions of 37.4 Mt CO2 eq, and total sequestration of 70.5 Mt CO2 eq. Cereals, vegetables, and hobby crops were the main contributors to carbon emissions, accounting for 41.61%, 21.87%, and 15.37%, respectively. Cereal crops also made the largest contribution to carbon sequestration at 53.18%. Bananas had the highest emissions per unit area (11.45 t CO2 eq ha-1), while walnuts had the highest sequestration (20.64 t CO2 eq ha-1). In addition, this study highlights effective strategies to reduce greenhouse gas emissions, such as reducing nitrogen fertilizer use, minimizing reactive nitrogen losses, and controlling methane emissions from rice fields. By elucidating the impact of carbon dynamics and crop categories, this study provides insights for sustainable agricultural practices and policies.


Asunto(s)
Agricultura , Carbono , Productos Agrícolas , China , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Carbono/análisis , Carbono/metabolismo , Gases de Efecto Invernadero/análisis , Secuestro de Carbono , Dióxido de Carbono/análisis , Producción de Cultivos/métodos
2.
Huan Jing Ke Xue ; 45(2): 1185-1195, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471955

RESUMEN

Microplastics are an emerging contaminant that can persist in the environment for extended periods, posing risks to ecological systems. Recently, microplastic pollution has emerged as a major global environmental problem. In order to ensure accurate and scientific evaluation of the ecological risks associated with microplastic pollution, it is of paramount importance to improve the simplicity and reliability of microplastic identification, systematically analyze the pollution characteristics of microplastics in various environmental media, and clarify their environmental impacts. Machine learning technology has gained widespread attention in microplastic research by learning and analyzing large volumes of data to establish result evaluation or prediction models. The use of machine learning can enhance the automation and identification efficiency of visual and spectral identification of microplastics, provide scientific support for tracing the sources of microplastic pollution, and help reveal the complex environmental effects of microplastics. This review provides a summary of the application characteristics and limitations of machine learning in the aforementioned areas by reviewing the progress made in research that employs machine learning technology in microplastic identification and environmental risk assessment. Furthermore, the findings of the review will provide suggestions and prospects for the development and application of machine learning in related areas.

3.
J Hazard Mater ; 465: 133472, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38219587

RESUMEN

Microplastic pollution, a major global concern, has garnered increasing attention in agricultural ecosystem research. China's Hetao Irrigation District, vital for grain production in the Yellow River Basin, lacks sufficient research on microplastic pollution of agricultural soils. This study, based on a detailed background investigation and testing of 47 samples, is the first to elucidate the characteristics and potential influencing factors of microplastics in the Hetao Irrigation District. The abundance of microplastics in the farmland soil ranged from 1810 to 86331 items/kg, with 90% measuring below 180 µm and mainly in film and fragment forms. Predominant polymers were polyethylene (PE, 43.0%) and polyamide (PA, 27.8%). Key pollution influencers were identified as agricultural inputs, with low-density polyethylene (LDPE) being the most extensively used plastic type. The carbonyl index and hydroxyl indices of the detected LDPE microplastics ranged from 0.041 to 0.96 and 0.092 to 1.20, respectively. The study highlights the significance of mulching management and agronomic practices in shaping microplastic characteristics. Potential pollution sources include agricultural inputs, irrigation equipment, domestic waste, and tire wear. Proposed effective strategies include responsible plastic use, robust waste management, and irrigation system upgrades, establishing a foundation for future ecological risk assessments and effective management approaches in the Hetao Irrigation District. ENVIRONMENTAL IMPLICATION: The harmful substances studied in this paper are microplastics, which are widely distributed in the environment and have potential ecological risks. This study is the first to investigate the characteristics of microplastics in farmland soil within the Hetao Irrigation Area, a region that is of critical importance to agricultural production in the Yellow River Basin of China. The study provides comprehensive insights into the factors influencing the characteristics of microplastics and speculates on their sources. These findings offer a novel perspective on the assessment of microplastic contamination in the area and provide valuable recommendations for prevention and control measures.

4.
Environ Sci Process Impacts ; 26(1): 8-15, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050906

RESUMEN

Plastic film mulching stands as a globally employed agricultural technology pivotal to agricultural progress. Nevertheless, the environmental degradation of plastic mulch films underscores their role as a major source of secondary plastic pollutants, particularly microplastics. While a growing body of research has drawn attention to the rising issue of microplastic pollution and its environmental implications stemming from the use of plastic mulch films, there remains a significant knowledge gap regarding the kinetics and rate-limiting mechanisms governing the generation of microplastics during processes driven by plastic photodegradation. Moreover, a comprehensive quantification of the connection between mulch deterioration and the behavior of microplastic release and accumulation has yet to be fully realized. In this study, a kinetic equation was formulated to characterize the degradation of plastic mulch films and the subsequent release and accumulation of microplastics under light exposure. The results demonstrate that with increasing irradiation time, the change in the release rate exhibits a bell-shaped Gaussian probability distribution, while the cumulative alteration of microplastics follows a Gaussian distribution. Remarkably, once the exposure time reaches µ + 3σ, the accumulation plateaus at 99.7%. This research establishes a theoretical framework for the prospective assessment of plastic mulch lifespan and its environmental repercussions. Moreover, the findings provide valuable insights for optimizing plastic mulch design and devising strategies to mitigate microplastic pollution.


Asunto(s)
Microplásticos , Plásticos , Suelo , Estudios Prospectivos , Agricultura
5.
J Hazard Mater ; 465: 133302, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141305

RESUMEN

Light stabilizers are commonly used as additives in mulching films and have environmental persistence, bioaccumulation and ecotoxicity. However, their occurrence and distribution in mulching films and accumulation in mulched soils are seldom reported. This study firstly presents a comprehensive screening of 19 light stabilizers in 65 mulching films and 30 farmland soils collected in China, of which five and eight light stabilizers were 100% detected, respectively. The light stabilizer concentration in biodegradable mulching films was significantly higher than that in polyethylene ones, with median concentrations of 1.75 × 106 µg/kg and 4.86 × 103 µg/kg, respectively. Furthermore, a positive correlation was observed between the light stabilizer concentration in mulching films and in soils. This indicates that mulching films play a critical role in the accumulation of light stabilizers in farmland soils, and biodegradable mulching films significantly increase benzotriazole light stabilizers in soils. Although the light stabilizer concentration in farmland soil is relatively low, the sustainable quantities of mulching film input and the long-term accumulation will still pose a threat to the ecological environment and organism health. Consequently, our work reveals the occurrence and environmental risk of light stabilizers in mulching films and farmland soils and brings attention to light stabilizers in the soil environment.


Asunto(s)
Agricultura , Suelo , Polietileno , Ambiente , Granjas , China , Plásticos
6.
Front Microbiol ; 14: 1237842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795307

RESUMEN

Introduction: Organic agriculture is highly regarded by people for its commitment to health, ecology, care, and fairness. The soil microbial community responds quickly to environmental changes and is a good indicator for evaluating soil microecology. Therefore, from the perspective of soil microbial communities, elucidating the impact of organic management on soil microecology in tea plantations has great significance for improving local tea plantation systems. Methods: The study collected bulk soil from organic management (OM) and conventional management (CM) tea plantations in Pu'er City, a major tea-producing area in China, and analyzed their species diversity, structural composition, and co-occurrence networks using metagenomics technology. Results: Compared with CM, the diversity index (Shannon) and evenness index (Heip) of soil fungi increased by 7.38% and 84.2% in OM tea plantations, respectively. The relative abundance of microorganisms related to the nitrogen cycle increased. Specifically, there was a significant increase in Rhodobiales, a 2-fold increase in Nitrospirae, and approximately 1.95 and 2.03 times increases in unclassified genera within Betaproteobacteria and Deltaproteobacteria, respectively. The relative abundance of plant residue degradation species, Gemmatimonadetes, Ascomycota, and Basidiomycota, increased by 2.8, 1, and 1.4 times, respectively. The OM was conducive to the establishment of collaborative relationships among bacterial species and increased the diversity and complexity of species relationships in fungal communities. The network stability of soil ecosystems was promoted. The organic tea plantations' keystone taxa contained mycorrhizal fungi (Pezoloma_ericae, Rhizophagus_irregularis, Rhizophagus_clarus), as well as species involved in soil nitrogen metabolism (Acidobacteria_bacterium, Acidobacteriia_bacterium_AA117, Sphingomonas_sp._URHD0007, Enhydrobacter_aerosaccus), pathogen (Erysiphe_pulchra), and parasites (Paramycosporidium saccamoeba). The partial least squares method (PLS-SEM) indicated that OM affected N-NH4+ negatively, increasing the abundance of fungi, and thereby positively affecting the Shannon index. Conclusion: In brief, reasonable organic management can improve the diversity of soil microorganisms, increase the relative abundance of beneficial bacteria in tea plantation soil, and promote the stability of the soil microbial ecological network.

7.
J Hazard Mater ; 459: 132068, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37494798

RESUMEN

Microplastics are widely distributed in the environment and pose potential ecological risks, increasing to be one of the most important environmental pollutants. However, when assessing the characteristics of microplastic contamination in environmental samples, inadequate quality control measures for the working solutions may introduce additional microplastic contamination and lead to an overestimation of microplastic abundance in the samples. In this study, we evaluated the microplastic contamination characteristics in commonly used flotation and digestion reagents to assess errors caused by microplastics in the reagents. The results showed that the abundance of microplastics in the reagents ranged from 0.8 to 43.4 items/g, with the abundance of microplastics in flotation reagents being lower than that in digestion reagents. The shapes of the detected microplastics included particles, fibers, and fragments, and their size and outline were generally small, with most being below 100 µm. The most common types of polymers detected were polyethylene and polypropylene. In order to improve the universality and readability of the results, the detected microplastic abundances were converted into the actual application concentration of the working fluid. It was found that the potential contamination of microplastics in untreated flotation solutions ranged from 1.5 to 30.8 items/mL, while in digestion solutions ranged from 0.1 to 2.3 items/mL. Our study emphasizes the need for quality control measures, such as suction filtration, when evaluating microplastics in environmental samples or conducting chemical and biological tests related to microplastics.

8.
Plants (Basel) ; 11(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35406822

RESUMEN

Nitrogen-based pollution from agriculture has global environmental consequences. Excessive use of chemical nitrogen fertilizer, incorrect manure management and rural waste treatment are key contributors. Circular agriculture combining cropland and livestock is an efficient channel to reduce the use of chemical nitrogen fertilizers, promote the recycling of livestock manure, and reduce the global N surplus. The internal circulation of organic nitrogen resources in the cropland-livestock system can not only reduce the dependence on external synthetic nitrogen, but also reduce the environmental impacts of organic waste disposal. Therefore, this study tried to clarify the reactive nitrogen emissions of the crop-swine integrated system compared to the separated system from a life cycle perspective, and analyze the reasons for the differences in nitrogen footprints of the two systems. The results showed that the integrated crop production and swine production increased the grain yield by 14.38% than that of the separated system. The nitrogen footprints of crop production and swine production from the integrated system were 12.02% (per unit area) and 19.78% lower than that from the separated system, respectively. The total nitrogen footprint of the integrated system showed a reduction of 17.06%. The reduction was from simpler waste manure management and less agricultural inputs for both chemical fertilizer and raw material for forage processing. In conclusion, as a link between crop planting and pig breeding, the integrated system not only reduces the input of chemical fertilizers, but also promotes the utilization of manure, increases crop yield, and decreases environmental pollution. Integrated cropland and livestock is a promising model for agriculture green and sustainable development in China.

9.
J Colloid Interface Sci ; 620: 1-13, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398733

RESUMEN

Superhydrophilic/underwater superoleophobic (SUS) membrane technology has attracted extensive attention for water purification. However, the fabrication of multifunctional membranes to satisfy the complex wastewater treatment is still a big challenge. In this work, bacterial cellulose (BC) based multifunctional SUS membranes were designed for water purification. Membranes were prepared by blending BC nanofibers with TiO2 nanoparticles (NPs), and further modified by the in situ growth of ZnO-NPs. The composite membranes showed oil/water (o/w) separation under a small driving pressure (0.2-0.3 bar) with a flux rate of 8232.81 ± 212 L m-2h-1 and with a high separation efficiency (>99.9%). Membranes could also separate oil-in-water emulsion with a separation flux of 1498 ± 74 L m-2h-1 and with high efficiency (99.25%). Moreover, the composite membrane exhibited photocatalytic activity under visible light with a high efficiency (>92%). The composite membranes were also investigated for antibacterial activity against Gram-positive and Gram-negative bacterial strains. This work may inspire the fabrication of next-generation multifunctional membranes for wastewater treatment, particularly oily wastewater, dyes and microbial contaminated water.


Asunto(s)
Purificación del Agua , Óxido de Zinc , Bacterias , Celulosa , Titanio/farmacología , Óxido de Zinc/farmacología
10.
Int J Biol Macromol ; 185: 890-906, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34214576

RESUMEN

Oil spill accidents and oily wastewater discharged by petrochemical industries have severely wasted water resources and damaged the environment. The use of special wetting materials to separate oil and water is efficient and environment-friendly. Cellulose is the most abundant renewable resource and has natural advantages in removing pollutants from oily wastewater. The application and modification of cellulose as special wetting materials have attracted considerable research attention. Therefore, we summarized cellulose-based superlipophilic/superhydrophobic and superhydrophilic/superoleophobic materials exhibiting special wetting properties for oil/water separation. The treatment mechanism, preparation technology, treatment effect, and representative projects of oil-bearing wastewater are discussed. Moreover, cellulose-based intelligent-responsive materials for application to oil/water separation and the removal of other pollutants from oily wastewater have also been summarized. The prospects and potential challenges of all the materials have been highlighted.


Asunto(s)
Celulosa/química , Aceites/química , Aguas Residuales/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua , Humectabilidad
11.
Waste Manag ; 81: 202-210, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30527036

RESUMEN

Large quantities and many varieties of agricultural organic wastes are produced in China annually. Applying agricultural organic wastes to soil plays an essential role in coping with the environmental pollution from agricultural wastes, solving the energy crisis and responding global climate change. But there is little information available on the effects of different agricultural organic wastes on soil greenhouse gas (GHG) emissions. The objectives of this study were to investigate and compare the impacts of different organic wastes on soil GHG emissions during a 4-year field experiments in the North China Plain, as well as analyze the influential factors that may be related to GHG emissions. The treatments were: crop straw (CS), biogas residue (BR), mushroom residue (MR), wine residue (WR) and pig manure (PM) returning to soil, as well as a control with no organic waste applied to soil but chemical fertilizer addition only (CF). The results showed that compared with CF treatment, organic material applied to soil significantly increased GHG emissions and emissions followed the order of WR(27,961.51 kg CO2-eq/ha/yr) > PM(26,376.50 kg CO2-eq/ha/yr) > MR(23,366.60 kg CO2-eq/ha/yr) > CS(22,434.44 kg CO2-eq/ha/yr) > BR (22,029.04 kg CO2-eq/ha/yr) > CF(17,402.77 kg CO2-eq/ha/yr), averagely. And considering the affecting factors, GHG emissions were significantly related to soil temperature and soil water content. Different organic wastes also affected soil total organic carbon (TOC), microbial carbon (MBC) and dissolved organic carbon (DOC) contents, which related to GHG emissions. Further analysis showed that characteristics of organic wastes affected GHG emissions, which included C-N ratio, lignin, polyphenol, cellulose and hemicellulose. Our study demonstrates that biogas residue returning to soil emitted minimum GHG emissions among these different types of organic wastes, which provided a better solution for applying organic wastes to mitigate soil GHG emissions.


Asunto(s)
Agricultura , Gases de Efecto Invernadero , Administración de Residuos , Carbono/análisis , China
12.
Environ Sci Pollut Res Int ; 24(30): 24019-24028, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28884297

RESUMEN

To effectively improve soil productivity and optimize organic fertilizer management while reducing environmental pollution and resource wasting in farmland system, the present study was conducted in Wuqiao Experiment Station of China Agricultural University, Hebei Province. Taking crop straw treatment as control, four kinds of organic materials including pig manure (PM), biogas residue (BR), biochar (BC) and crop straw (ST) were applied to soil at the same nitrogen (N) level. The soil bacteria community characteristics were explored using Illumina Miseq high-throughput sequencing technologies. The results were as follows: (1) Compared with ST, PM, BR and BC had no significant effect on Chao 1 and Shannon index. The dominant bacterial groups include Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi in sandy loam soil after the application of different organic materials. The abundance of Proteobacteria in BC treatment was significantly lower than that of ST (control) treatment (p < 0.05). On the contrary, compared to ST, the abundances of Acidobacteria increased by 65.0, 40.7, and 58.7% in the BC, BR, and PM treatments, respectively. (2) Compared to ST, the BC treatment significantly (p < 0.05) increased in soil organic carbon (SOC) and pH in the arable layer (0-20 cm) in the farmland (p < 0.05), and significantly increased the soil pH with a value of 0.26 level (p < 0.05). (3) Pearson correlation analysis results showed that the PCoA1 scores and soil pH were closely correlated (R 2 = 0.3738, p < 0.05). In addition, pairwise regression between PCoA1 scores and SOC (R 2 = 0.5008, p < 0.05), PCoA2 scores and SOC (R 2 = 0.4053, p < 0.05) were both closely correlated. In general, our results indicated that organic materials amendment shaped the bacterial community in sandy loam soil through changing the soil pH and SOC.


Asunto(s)
Carbón Orgánico/química , Fertilizantes/análisis , Nitrógeno/análisis , Suelo/química , Agricultura , Animales , Bacterias , China , Estiércol , Nitrógeno/química , Proteobacteria , Microbiología del Suelo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...