Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739551

RESUMEN

The Dzyaloshinskii-Moriya interaction (DMI) is understood to be forbidden by the symmetry of centrosymmetric systems, thus restricting the candidate types for investigating many correlated physical phenomena. Here, we report the hidden DMI existing in centrosymmetric magnets driven by the local inversion symmetry breaking of specific spin sublattices. The opposite DMI spatially localized on the inverse spin sublattice favors the separated spin spiral with opposite chirality. Furthermore, we elucidate that hidden DMI widely exists in many potential candidates, from the first-principles calculations on the mature crystal database. Interestingly, novel topological spin configurations, such as the anti-chirality-locked merons and antiferromagnetic-ferromagnetic meron chains, are stabilized as a consequence of hidden DMI. Our understanding enables the effective control of DMI by symmetry operations at the atomic level and enlarges the range of currently useful magnets for topological magnetism.

2.
J Am Chem Soc ; 145(44): 24202-24209, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37890127

RESUMEN

The predesignable porous structure and high structural flexibility of covalent organic frameworks (COFs) render this material desirable as a platform for addressing various cutting-edge issues. Precise control over their composition, topological structure, porosity, and stability to realize tailor-made functionality still remains a great challenge. In this work, we developed a new kind of three-dimensional (3D) carborane-based COF with a 7-fold interpenetrating dia topological diagram. The resulting COFs exhibited high crystallinity, exceptional porosity, and strong robustness. The slightly lower electronegativity of boron (2.04) than that of hydrogen (2.20) can lead to the polarization of the B-H bond into a Bδ+-Hδ- mode, which renders these COFs as high-performance materials for the adsorption and separation of hexane isomers through the B-Hδ-···Hδ+-C interaction. Significantly, the carborane content of obtained COFs reached up to 54.2 wt %, which gets the highest rank among all the reported porous materials. Combining high surface area, strong robustness, and high content of carborane, the obtained COFs can work as efficient adsorbents for the separation of the five hexane isomers with high separation factors. This work not only enhances the diversity of 3D functional COFs but also constitutes a further step toward the efficient separation of alkane isomers.

3.
Nat Commun ; 14(1): 5371, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666843

RESUMEN

Magnetic tunnel junctions (MTJs) with conventional bulk ferromagnets separated by a nonmagnetic insulating layer are key building blocks in spintronics for magnetic sensors and memory. A radically different approach of using atomically-thin van der Waals (vdW) materials in MTJs is expected to boost their figure of merit, the tunneling magnetoresistance (TMR), while relaxing the lattice-matching requirements from the epitaxial growth and supporting high-quality integration of dissimilar materials with atomically-sharp interfaces. We report TMR up to 192% at 10 K in all-vdW Fe3GeTe2/GaSe/Fe3GeTe2 MTJs. Remarkably, instead of the usual insulating spacer, this large TMR is realized with a vdW semiconductor GaSe. Integration of semiconductors into the MTJs offers energy-band-tunability, bias dependence, magnetic proximity effects, and spin-dependent optical-selection rules. We demonstrate that not only the magnitude of the TMR is tuned by the semiconductor thickness but also the TMR sign can be reversed by varying the bias voltages, enabling modulation of highly spin-polarized carriers in vdW semiconductors.

4.
Nano Lett ; 23(18): 8690-8696, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37695701

RESUMEN

Conduction electron spins interacting with magnetic impurity spins can mediate an interlayer exchange interaction, namely, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. This discovery opened the way to significant technological developments in the field of magnetic storage and spintronics. So far, the RKKY-type interlayer interaction has been found to construct symmetric coupling of magnetism; however, the asymmetric counterpart remains unexplored. Here we report unprecedented RKKY-type interlayer Dzyaloshinskii-Moriya interaction (DMI) in synthetic magnets, exhibiting a damped oscillatory feature. This asymmetric interlayer interaction is found to be dramatically dependent on the intermediate coupling layer. By introducing the Fert-Lévy model to the trilayer system, we reveal that the in-plane inversion symmetry breaking plays a pivotal role for generating interlayer DMI and the RKKY oscillation is an intrinsic behavior in metallic multilayers. Our finding fills up the empty block for RKKY-type asymmetric interlayer exchange coupling in comparison to the well-known (symmetric) RKKY-type interlayer exchange coupling.

6.
J Phys Condens Matter ; 35(20)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36867875

RESUMEN

Based on the first-principles calculations, we examine the effect of hole doping on the ferromagnetism and Dzyaloshinskii-Moriya interaction (DMI) for PbSnO2, SnO2and GeO2monolayers. The nonmagnetic to ferromagnetic transition and the DMI can emerge simultaneously in the three two-dimensional IVA oxides. By increasing the hole doping concentration, we find the ferromagnetism can be strengthened for the three oxides. Due to different inversion symmetry breaking, isotropic DMI is found in PbSnO2, whereas anisotropic DMI presents in SnO2and GeO2. More appealingly, for PbSnO2with different hole concentrations, DMI can induce a variety of topological spin textures. Interestingly, a peculiar feature of synchronously switch of magnetic easy axis and DMI chirality upon hole doping is found in PbSnO2. Hence, Néel-type skyrmions can be tailored via changing hole density in PbSnO2. Furthermore, we demonstrate that both SnO2and GeO2.with different hole concentrations can host antiskyrmions or antibimerons (in-plane antiskyrmions). Our findings demonstrate the presence and tunability of topological chiral structures in p-type magnets and open up new possibility for spintronics.

7.
Phys Rev Lett ; 128(16): 167202, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35522502

RESUMEN

A broken interfacial inversion symmetry in ultrathin ferromagnet/heavy metal (FM/HM) bilayers is generally believed to be a prerequisite for accommodating the Dzyaloshinskii-Moriya interaction (DMI) and for stabilizing chiral spin textures. In these bilayers, the strength of the DMI decays as the thickness of the FM layer increases and vanishes around a few nanometers. In the present study, through synthesizing relatively thick films of compositions CoPt or FePt, CoCu or FeCu, FeGd and FeNi, contributions to DMI from the composition gradient-induced bulk magnetic asymmetry (BMA) and spin-orbit coupling (SOC) are systematically examined. Using Brillouin light scattering spectroscopy, both the sign and amplitude of DMI in films with controllable direction and strength of BMA, in the presence and absence of SOC, are experimentally studied. In particular, we show that a sizable amplitude of DMI (±0.15 mJ/m^{2}) can be realized in CoPt or FePt films with BMA and strong SOC, whereas negligible DMI strengths are observed in other thick films with BMA but without significant SOC. The pivotal roles of BMA and SOC are further examined based on the three-site Fert-Lévy model and first-principles calculations. It is expected that our findings may help to further understand the origin of chiral magnetism and to design novel noncollinear spin textures.

8.
Nano Lett ; 22(6): 2334-2341, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35266723

RESUMEN

As a fundamental magnetic parameter, Dzyaloshinskii-Moriya interaction (DMI), has gained a great deal of attention in the last two decades due to its critical role in formation of magnetic skyrmions. Recent discoveries of two-dimensional (2D) van der Waals (vdW) magnets has also gained a great deal of attention due to appealing physical properties, such as gate tunability, flexibility, and miniaturization. Intensive studies have shown that isotropic DMI stabilizes ferromagnetic (FM) topological spin textures in 2D magnets or their corresponding heterostructures. However, the investigation of anisotropic DMI and antiferromagnetic (AFM) topological spin configurations remains elusive. Here, we propose and demonstrate a family of 2D magnets with P4m2 symmetry-protected anisotropic DMI. More interestingly, various topological spin configurations, including FM/AFM antiskyrmion and AFM vortex-antivortex pair, emerge in this family. These results give a general method to design anisotropic DMI and pave the way toward topological magnetism in 2D materials using crystal symmetry.

10.
Nat Commun ; 12(1): 3113, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035269

RESUMEN

Perpendicularly magnetized synthetic antiferromagnets (SAF), possessing low net magnetization and high thermal stability as well as easy reading and writing characteristics, have been intensively explored to replace the ferromagnetic free layers of magnetic tunnel junctions as the kernel of spintronic devices. So far, utilizing spin-orbit torque (SOT) to realize deterministic switching of perpendicular SAF have been reported while a large external magnetic field is typically needed to break the symmetry, making it impractical for applications. Here, combining theoretic analysis and experimental results, we report that the effective modulation of Dzyaloshinskii-Moriya interaction by the interfacial crystallinity between ferromagnets and adjacent heavy metals plays an important role in domain wall configurations. By adjusting the domain wall configuration between Bloch type and Néel type, we successfully demonstrate the field-free SOT-induced magnetization switching in [Co/Pd]/Ru/[Co/Pd] SAF devices constructed with a simple wedged structure. Our work provides a practical route for utilization of perpendicularly SAF in SOT devices and paves the way for magnetic memory devices with high density, low stray field, and low power consumption.

11.
ACS Appl Mater Interfaces ; 13(8): 10656-10663, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33595292

RESUMEN

The efforts toward the experimental realization of spin-polarized transports in ideal materials or platforms, such as the magnetized graphene or various quantum Hall states, is a research hotspot in spintronics. Magnetic van der Waals materials open the door for exploring various physical phenomena, technologies, and integrating novel spintronic devices seamlessly within the 2D limit. Here, we demonstrate magnetic proximity effect in chromium trichloride (CrCl3)/bilayer graphene (BLG) heterostructures by low-temperature transport measurements. An effective exchange field induced in BLG has been demonstrated by the Zeeman spin Hall effect via nonlocal measurements. Furthermore, the exchange field modulates the quantum Hall ground state of BLG and thus favors the formation of a canted antiferromagnetic (CAF) phase in an external perpendicular magnetic field (B⊥). Asymmetric nonlocal magneto-transport behaviors are also observed at opposite B⊥ directions, due to the asymmetric modulation on the exchange field by external B⊥ directions. Our work suggests that the 2D magnetic van der Waals materials and graphene hybrid systems offer a unique platform for quantum Hall ferromagnetism physics.

12.
Eur Phys J E Soft Matter ; 41(2): 29, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29488019

RESUMEN

Nanoparticle can adsorb at the air-water interface and gives rise to the special interfacial mechanical properties. With the influence of external stimulus, the adsorption state of the particles may be changed and in turn the mechanical properties of the particle layer. In this work, we study the mechanical properties of a monolayer of silica nanoparticles deposited in the Langmuir trough. The area of the monolayer was varied sinusoidally by two oscillating barriers and the surface pressure was monitored by two orthogonal Wilhelmy plates. It has been found that the surface pressure of the particle layer exhibits a significant anisotropic effect. At the early stage of the oscillation, the surface pressure versus time is sinusoidal. However, with the increase of the oscillation time, the response of the particle layer significantly deviates the sinusoidal function, which implies that the response becomes nonlinear caused by a long-term oscillation. The fast Fourier Transformation (FFT) of the surface pressure data shows that the non-sinusoidal response is composed of several fundamental frequency responses. We eventually obtained the time variation of the compression modulus E and shear modulus G . A possible mechanism was proposed to account for the mechanical properties change and the nonlinear behavior of the particle monolayer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...