Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
J Phys Condens Matter ; 36(33)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38729186

RESUMEN

Spin reorientation transition is an ubiquitous phenomenon observed in magnetic rare earth orthferrites RFeO3, which has garnered significant attention in recent years due to its potential applications in spintronics or magnetoelectric devices. Although a plenty of experimental works suggest that the magnetic interaction between R3+and Fe3+spins is at the heart of the spin reorientation, but a direct and conclusive theoretical support has been lacking thus far, primarily due to the challenging nature of handling R 4felectrons. In this paper, we explored DyFeO3as an example by means of comprehensive first principles calculations, and compared two different approaches, where the Dy 4felectrons were treated separately as core or valence states, aiming to elucidate the role of Dy 4felectrons, particularly in the context of the spin reorientation transition. The comparison provides a solid piece of evidence for the experimental argument that the Dy3+-Fe3+magnetic interactions play a vital role in triggering spin reorientation of Fe3+moments at low temperatures. The findings revealed here not only extend our understanding on the underlying mechanism for spin reorientation transition in RFeO3, but also highlight the importance of explicit description of R 4felectrons in rationally reproducing their structural, electronic and magnetic properties.

2.
Neuropharmacology ; : 110006, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763325

RESUMEN

Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aß deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.

3.
Regen Biomater ; 11: rbae039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746707

RESUMEN

Decellularized extracellular matrix hydrogel, especially that derived from spinal cord (DSCM hydrogel), has been actively considered as a functional biomaterial for remodeling the extracellular matrix of the native tissue, due to its unique characteristics in constructing pro-regenerative microenvironment for neural stem cells (NSCs). Furthermore, DSCM hydrogel can provide multiple binding domains to growth factors and drugs. Therefore, both exogenous neurotrophic factors and anti-inflammatory drugs are highly desired to be incorporated into DSCM hydrogel, which may synergistically modulate the complex microenvironment at the lesion site after spinal cord injury (SCI). Herein, neurotrophin-3 (NT-3) and curcumin (Cur) were integrated into DSCM hydrogel for SCI therapy. Due to different affinities to the DSCM hydrogel, NT-3 underwent a controlled release manner, while curcumin released explosively within the first 24 h, followed by rather sustained but slower release. The integration of both NT-3 and curcumin significantly enhanced NSCs proliferation and their neuronal differentiation. Meanwhile, the release of curcumin promoted macrophages polarization into anti-inflammatory subtypes, which further facilitated NSCs differentiation into neurons. The in situ injected DSCM + NT3 + Cur hydrogel exerted superior capability in alleviating the inflammatory responses in rat contused spinal cord. Compared to DSCM hydrogel alone, DSCM + NT3 + Cur hydrogel more significantly promoted the recruitment of NSCs and their neuronal differentiation at the lesion site. These outcomes favored functional recovery, as evidenced by the improved hind limb movement. Overall, the bioactive DSCM hydrogel can serve as a multifunctional carrier for cooperatively release of growth factors and drugs, which significantly benefits microenvironment regulation and nerve regeneration after SCI.

4.
Front Aging Neurosci ; 16: 1390915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752208

RESUMEN

Background: Recent studies show testosterone (T) deficiency worsens cognitive impairment in Alzheimer's disease (AD) patients. Mitochondrial dysfunction, as an early event of AD, is becoming critical hallmark of AD pathogenesis. However, currently, whether T deficiency exacerbates mitochondrial dysfunction of men with AD remains unclear. Objective: The purpose of this study is to explore the effects of T deficiency on mitochondrial dysfunction of male AD mouse models and its potential mechanisms. Methods: Alzheimer's disease animal model with T deficiency was performed by castration to 3-month-old male APP/PS1 mice. Hippocampal mitochondrial function of mice was analyzed by spectrophotometry and flow cytometry. The gene expression levels related to mitochondrial biogenesis and mitochondrial dynamics were determined through quantitative real-time PCR (qPCR) and western blot analysis. SH-SY5Y cells treated with flutamide, T and/or H2O2 were processed for analyzing the potential mechanisms of T on mitochondrial dysfunction. Results: Testosterone deficiency significantly aggravated the cognitive deficits and hippocampal pathologic damage of male APP/PS1 mice. These effects were consistent with exacerbated mitochondrial dysfunction by gonadectomy to male APP/PS1 mice, reflected by further increase in oxidative damage and decrease in mitochondrial membrane potential, complex IV activity and ATP levels. More importantly, T deficiency induced the exacerbation of compromised mitochondrial homeostasis in male APP/PS1 mice by exerting detrimental effects on mitochondrial biogenesis and mitochondrial dynamics at mRNA and protein level, leading to more defective mitochondria accumulated in the hippocampus. In vitro studies using SH-SY5Y cells validated T's protective effects on the H2O2-induced mitochondrial dysfunction, mitochondrial biogenesis impairment, and mitochondrial dynamics imbalance. Administering androgen receptor (AR) antagonist flutamide weakened the beneficial effects of T pretreatment on H2O2-treated SH-SY5Y cells, demonstrating a critical role of classical AR pathway in maintaining mitochondrial function. Conclusion: Testosterone deficiency exacerbates hippocampal mitochondrial dysfunction of male APP/PS1 mice by accumulating more defective mitochondria. Thus, appropriate T levels in the early stage of AD might be beneficial in delaying AD pathology by improving mitochondrial biogenesis and mitochondrial dynamics.

6.
Int Immunopharmacol ; 134: 112233, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38735256

RESUMEN

Immunotherapy has become a revolutionary method for treating tumors, offering new hope to cancer patients worldwide. Immunotherapy strategies such as checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T) therapy, and cancer vaccines have shown significant potential in clinical trials. Despite the promising results, there are still limitations that impede the overall effectiveness of immunotherapy; the response to immunotherapy is uneven, the response rate of patients is still low, and systemic immune toxicity accompanied with tumor cell immune evasion is common. Ultrasound technology has evolved rapidly in recent years and has become a significant player in tumor immunotherapy. The introductions of high intensity focused ultrasound and ultrasound-stimulated microbubbles have opened doors for new therapeutic strategies in the fight against tumor. This paper explores the revolutionary advancements of ultrasound combined with immunotherapy in this particular field.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38573002

RESUMEN

Aims: Erythropoiesis is controlled by several factors, including oxygen level under different circumstances. However, the role of hypoxia in erythroid differentiation and the underlying mechanisms are poorly understood. We studied the effect and mechanism of hypoxia on erythroid differentiation of K562 cells and observed the effect of hypoxia on early erythropoiesis of zebrafish. Results: Compared with normal oxygen culture, both hemin-induced erythroid differentiation of K562 cells and the early erythropoiesis of zebrafish were inhibited under hypoxic treatment conditions. Hypoxia-inducible factor 1 alpha (HIF1α) plays a major role in the response to hypoxia. Here, we obtained a stable HIF1α knockout K562 cell line using the CRISPR-Cas9 technology and further demonstrated that HIF1α knockout promoted hemin-induced erythroid differentiation of K562 cells under hypoxia. We demonstrated an HIF1-mediated induction of the nuclear factor interleukin-3 (NFIL3) regulated in K562 cells under hypoxia. Interestingly, a gradual decrease in NFIL3 expression was detected during erythroid differentiation of erythropoietin-induced CD34+ hematopoietic stem/progenitor cells (HSPCs) and hemin-induced K562 cells. Notably, erythroid differentiation was inhibited by enforced expression of NFIL3 under normoxia and was promoted by the knockdown of NFIL3 under hypoxia in hemin-treated K562 cells. In addition, a target of NFIL3, pim-1 proto-oncogene, serine/threonine kinase (PIM1), was obtained by RNA microarray after NFIL3 knockdown. PIM1 can rescue the inhibitory effect of NFIL3 on hemin-induced erythroid differentiation of K562 cells. Innovation and Conclusion: Our findings demonstrate that the HIF1α-NFIL3-PIM1 signaling axis plays an important role in erythroid differentiation under hypoxia. These results will provide useful clues for preventing the damage of acute hypoxia to erythropoiesis.

8.
Phys Chem Chem Phys ; 26(16): 12806-12819, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38619877

RESUMEN

Combining the phosphonic acid group with the sulfonic acid group in PEMs has been shown to be an effective strategy for improving the fuel cell performance. However, the interplay of two different ionic groups and the resulting effect on the membrane properties have not been fully elucidated. Here, we used classical molecular dynamics simulation to investigate the morphologies, transport properties and effects of ionic groups in a novel perfluorinated PEM containing two ionic groups (PFSA-PFPA) in comparison to the corresponding homopolymers. Phase separations between hydrophilic and hydrophobic domains are confirmed in these PEMs and result from the evolution of water clusters formed around the ionic groups. The combination of both ionic groups brings a complicated morphological feature in PFSA-PFPA, with near-cylindrical aqueous domains of large length scales interconnected by tortuous domains of small sizes. And we found that the self-diffusion coefficients of water molecules are strongly related to morphologies, with the water transport in PFSA-PFPA lying between two analogous homopolymers. At the molecular level, we found that the sulfonic and phosphonic acid groups have distinct effects on the coordination behaviors and the dynamics of water molecules and hydronium ions. Strong electrostatic interactions lead to compact coordination structures and sluggish dynamics of hydronium ions around phosphonic acid groups, which determine the morphological evolution and transport properties in PFSA-PFPA. Our study affords insights into the relationship between molecular characteristics and transport properties bridged by phase-separated morphologies in a novel PEM containing both sulfonic acid and phosphonic acid groups, which deepens the understanding of the interplay between two ionic groups and may inspire the rational design of high-performance PEMs.

9.
Med Sci Monit ; 30: e942888, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38576138

RESUMEN

BACKGROUND This retrospective study aimed to compare patient outcomes from standard total knee arthroplasty (TKA) vs navigation-guided arthroplasty using the Brainlab software-guided surgical system at Cangzhou Hospital of Integrated TCM-WM, Hebei, Hebei Province, China from January 2021 to July 2023. MATERIAL AND METHODS A total of 239 patients who underwent total knee arthroplasty in Cangzhou Hospital of Integrated TCM-WM, Hebei from January 2021 to July 2023 were retrospectively analyzed. According to the inclusion criteria, 212 eligible patients were selected for analysis and divided into a Navigation Group (NG) (n=105) and a Traditional Group (TG) (n=107) according to surgical method used. Outcomes measured included duration of disease, operative time, intraoperative blood loss volume, postoperative length of hospital stay, and pain measured by the hospital for special surgery knee score (HSS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and forgotten joint score (FJS). RESULTS The comparison of perioperative results between the 2 groups showed that the incision length in the NG was significantly longer than that in the TG (P<0.001, 95% Cl 2.59-3.35). At 3 months after surgery, the HSS score of the NG was statistically higher than that of the TG (P=0.002, 95% Cl 3.42-4.46); the WOMAC score of the NG was lower than that of the TG (P<0.001, 95% Cl -4.41-2.87); and the FJS score of the NG was significantly higher than that of the TG (P=0.003, 95% Cl 2.39-3.67). CONCLUSIONS Compared with conventional TKA, use of the Brainlab navigation system is associated with a longer incision, more accurate implantation position of the prosthesis, faster recovery of knee joint function, and helps patients to "forget" about their knee prosthesis in the short term.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Osteoartritis de la Rodilla , Herida Quirúrgica , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Estudios Retrospectivos , Articulación de la Rodilla/cirugía , Osteoartritis de la Rodilla/cirugía , Resultado del Tratamiento
10.
Cell Transplant ; 33: 9636897241247951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651796

RESUMEN

Hematological toxicity is a severe adverse event (AE) in anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). However, the pathophysiological mechanism underlying prolonged cytopenia and the relationship between persistent cytopenia, efficacy, and AEs after anti-CD19 CAR T cell therapy are unknown. Therefore, this study explored whether persistent cytopenia after anti-CD19 CAR T cell therapy in patients with R/R DLBCL can predict therapeutic efficacy and AEs. Thirty-eight patients with R/R DLBCL were enrolled in an anti-CD19 CAR T cell therapy clinical trial. Patients received lymphodepleting chemotherapy with fludarabine and cyclophosphamide before CAR T cell therapy. The degree and duration of cytopenia, clinical response, proportion of CAR T cells, interleukin-6 (IL-6) levels, AEs, and follow-up were observed after therapy. Grades 3-4 persistent cytopenia occurred in 14 patients with R/R DLBCL, who recovered 8-18 weeks after CAR T cell infusion. These patients achieved an objective response rate (ORR) for anti-CD19 CAR T cell therapy. In patients who achieved ORR, the incidence of Grades 3-4 persistent cytopenia was higher in patients with a high tumor load than in those without a high tumor load. The mean peaks of IL-6 and anti-CD19 CAR T cells and the cytokine release syndrome grade in patients with Grades 3-4 persistent cytopenia were higher than those in patients without persistent cytopenia. Anti-CD19 CAR T cells were observed 21 and 28 days after infusion, and patients had Grades 3-4 persistent cytopenia. Progression-free and overall survival were higher in patients with Grades 3-4 persistent cytopenia than in those without cytopenia. Therefore, persistent cytopenia after anti-CD19 CAR T cell therapy in patients with R/R DLBCL can predict therapeutic efficacy and AEs, allowing clinicians to determine the efficiency of CD-19 CAR T cell therapy and the associated AEs.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/terapia , Masculino , Femenino , Persona de Mediana Edad , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Adulto , Antígenos CD19/metabolismo , Anciano , Receptores Quiméricos de Antígenos/uso terapéutico , Adulto Joven , Citopenia
11.
Cancer Med ; 13(4): e7064, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38457256

RESUMEN

INTRODUCTION: Although anti-CD19 chimeric antigen receptor (CAR) T cell therapy was approved as a very effective salvage strategy in relapsed/refractory (R/R) B cell lymphoma, the experience in R/R gastrointestinal (GI) lymphoma is still insufficient. METHODS: We summarized the efficacy and side effects of anti-CD19 CAR T-cell therapy in 12 patients with R/R GI lymphoma. Based on literature, the R/R GI lymphoma patients were divided into subgroups with different characteristics: Bulky/No bulky disease, Gastric/Gastrointestinal involvement, Gastrointestinal/Combined extra-gastrointestinal lesions, Ulcer/Lumps or nodules type, With/without gastrointestinal bleeding. RESULTS: The objective response rate (ORR) was 66.67% in these 12 patients. The ORR was 83.33% in no bulky disease group, 80.00% in gastric involvement group, 100.00% in ulcer type group, and 80.00% in no gastrointestinal bleeding group. The CR rate was 33.33% in these 12 patients. The CR was 50.0% in no bulky disease group, 60.00% in gastric involvement group, and 80.00% in ulcer type group. The PFS and OS rate of the 12 patients at 6 months after infusion were 54.55% and 58.33%, respectively. The overall survival (OS) at 6 months was higher in no bulky disease group. There was no difference of the OS or the progression free survival (PFS) at 6 months between the other groups. The mean peak of CAR-T cells and Cytokine Release Syndrome (CRS) grade were higher in gastrointestinal lesions group. The mean peak of IFN-γ and CRS grade were higher in gastrointestinal bleeding group. Four out of six patients in group of gastrointestinal lesions group were patient with high tumor burden. Patients with gastrointestinal involvement only were at higher risk for gastrointestinal bleeding. CONCLUSIONS: The ORR and CR of high tumor load, gastrointestinal involvement, lumps or nodules type and gastrointestinal bleeding group were lower. The CRS grade was higher in gastrointestinal lesions group and in gastrointestinal bleeding group. Patients with gastrointestinal involvement only were at higher risk for gastrointestinal bleeding.


Asunto(s)
Neoplasias Gastrointestinales , Linfoma de Células B , Linfoma , Humanos , Inmunoterapia Adoptiva/efectos adversos , Receptores de Antígenos de Linfocitos T , Linfocitos T , Úlcera/etiología , Linfoma/terapia , Linfoma de Células B/etiología , Neoplasias Gastrointestinales/terapia , Neoplasias Gastrointestinales/etiología , Síndrome de Liberación de Citoquinas/etiología , Antígenos CD19 , Hemorragia Gastrointestinal
12.
Eur J Med Res ; 29(1): 149, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429764

RESUMEN

BACKGROUND: As a traditional Mongolian medicine, Zhenzhu Tongluo pills has played a good neuroprotective function in clinic. However, the key mechanisms by which it works are poorly studied. OBJECTIVES: To study the effect and mechanism of Zhenzhu Tongluo pills in treating diabetic peripheral neuropathy injury. METHODS: Diabetic peripheral neuropathy model was established by injecting STZ into rats. Physiological, behavioral, morphological and functional analyses were used to evaluate that the overall therapeutic effect of rats, ELISA, qRT-PCR, Western blot, immunohistochemical staining, HE staining and TUNEL staining were used to further study the related mechanism. RESULTS: Zhenzhu Tongluo pills can significantly improve the physiological changes, behavioral abnormalities, structural and functional damage in diabetic peripheral neuropathy rats, which may be related to the anti-inflammatory and anti-apoptotic effects that realized by regulating PI3K/AKT, MAPK, NF-κB signaling pathways. CONCLUSIONS: Zhenzhu Tongluo pills has neuroprotective effect, and anti-inflammatory and anti-apoptosis may be the important way of its function.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Medicamentos Herbarios Chinos , Ratas , Animales , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Fosfatidilinositol 3-Quinasas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , FN-kappa B/metabolismo , Antiinflamatorios/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico
13.
Biochem Biophys Res Commun ; 706: 149765, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38484573

RESUMEN

Bacterial chemoreceptors sense the extracellular signals and regulate bacterial motilities, biofilm formation, etc. The periplasmic ligand binding domains of chemoreceptors occur as different structural folds and recognize a diversity of chemical molecules. In Pseudomonas aeruginosa (PAO1), two bacterial chemoreceptors, McpN (PA2788) and PilJ (PA0411), are proposed to both contain a PilJ-like ligand-binding domain (LBD) (Pfam motif PF13675) and involved in nitrate chemotaxis and type IV pilus-mediated motility, respectively. The LBDs of McpN and PilJ consist of 135 and 263 residues, respectively, and share very low sequence identity, suggesting they might occur as different structures. Here, we found that PilJ-LBD folded into an HBM module, the same as the sensor domains of McpS-LBD and TorS-LBD, but it differed from that of McpN-LBD. We also observed a trimer in SEC and AUC and proposed a trimeric model based on the crystal structure. Based on the sequence, we classified the Pfam containing McpN-LBD and PilJ-LBD into three classes: sPilJ (single PilJ) represented by McpN-LBD with only one PilJ domain, dPilJ (dual PilJ) that contained dual PilJ domains, and hPilJ (hybrid PilJ) that comprises of a PilJ domain and another non-PilJ domain. Our work indicates a significant structural difference between the ligand binding domains of PilJ and McpN and will help our further study on both kinds of chemoreceptors.


Asunto(s)
Proteínas Bacterianas , Fimbrias Bacterianas , Proteínas Bacterianas/metabolismo , Ligandos , Fimbrias Bacterianas/metabolismo , Dominios Proteicos , Quimiotaxis , Bacterias/metabolismo
14.
Mol Biotechnol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466505

RESUMEN

Acute myocardial infarction (AMI) is one of the critical health conditions often caused by the rupture of unstable coronary artery plaque, triggering a series of events, such as platelet activation, thrombus formation, coronary artery blockage, lasted severe ischemia, and hypoxia in cardiomyocytes, and culminating in cell death. Platelet-derived microvesicles (PMVs) act as intermediates for cellular communication. Nevertheless, the role of PMVs in myocardial infarction remains unclear. Initially, AMI-related messenger ribose nucleic acid (mRNA) and micro RNA (miRNA) datasets from the Gene Expression Omnibus (GEO) database were analyzed, specifically focusing on the expressed genes associated with Ferroptosis. Further, a miRNA-mRNA regulatory network specific to AMI was constructed. Then, the effect of PMVs on cardiomyocyte survival was further confirmed through in vitro experiments. High ACSL1 expression was observed in the platelets of AMI patients. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that ACSL1, located in the mitochondria, played a key role in the PPAR signaling pathway. The elevated ACSL1 expression in a co-culture model of PMVs and AC16 cardiomyocytes significantly increased the AC16 cell Ferroptosis. Further, we validated that the platelet ACSL1 expression could be regulated by hsa-miR-449a. Together, these findings suggested that platelet ACSL1 could trigger myocardial cell death via PMV transport. In addition, this research provided a theoretical framework for attenuating myocardial cell Ferroptosis in patients with acute myocardial infarction.

15.
J Neurochem ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533619

RESUMEN

Though previous studies revealed the potential associations of elevated levels of plasma fibrinogen with dementia, there is still limited understanding regarding the influence of Alzheimer's disease (AD) biomarkers on these associations. We sought to investigate the interrelationships among fibrinogen, cerebrospinal fluid (CSF) AD biomarkers, and cognition in non-demented adults. We included 1996 non-demented adults from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study and 337 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The associations of fibrinogen with AD biomarkers and cognition were explored using multiple linear regression models. The mediation analyses with 10 000 bootstrapped iterations were conducted to explore the mediating effects of AD biomarkers on cognition. In addition, interaction analyses and subgroup analyses were conducted to assess the influence of covariates on the relationships between fibrinogen and AD biomarkers. Participants exhibiting low Aß42 were designated as A+, while those demonstrating high phosphorylated tau (P-tau) and total tau (Tau) were labeled as T+ and N+, respectively. Individuals with normal measures of Aß42 and P-tau were categorized as the A-T- group, and those with abnormal levels of both Aß42 and P-tau were grouped under A+T+. Fibrinogen was higher in the A+ subgroup compared to that in the A- subgroup (p = 0.026). Fibrinogen was higher in the A+T+ subgroup compared to that in the A-T- subgroup (p = 0.011). Higher fibrinogen was associated with worse cognition and Aß pathology (all p < 0.05). Additionally, the associations between fibrinogen and cognition were partially mediated by Aß pathology (mediation proportion range 8%-28%). Interaction analyses and subgroup analyses showed that age and ApoE ε4 affect the relationships between fibrinogen and Aß pathology. Fibrinogen was associated with both cognition and Aß pathology. Aß pathology may be a critical mediator for impacts of fibrinogen on cognition.

16.
Phys Chem Chem Phys ; 26(11): 8824-8833, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38425316

RESUMEN

By means of ab initio density functional theory calculations taking into account electronic correlation and van der Waals force, we conducted comprehensive studies of the electronic and magnetic properties, as well as structural and magnetic ordering evolution under pressure of the square lattice antiferromagnets AMoOPO4Cl (A = K, Rb) containing Mo5+ ions with , theoretically predicted as the potential candidates for achieving quantum phases, existing in the boundary regimes for square lattice magnets. Our results indicate that the columnar antiferromagnetic ordering, experimentally determined, is the magnetic ground state of the ambient P4/nmm phase, stabilized by the predominant antiferromagnetic next nearest neighbor interaction J2 in the diagonal directions of the square lattice, regardless of the effective Hubbard amendment values. More importantly, the P4/n phase, involving the mutual twisting of the MoO5Cl and PO4 polyhedra, satisfactorily reproduces the experimentally observed structural transition and the subsequent magnetic ordering transition from columnar antiferromagnetic ordering to Néel antiferromagnetic one, identified to be the appropriate high pressure structure. Furthermore, the mechanism underlined responsible for the magnetic ordering transition at high pressure has been disclosed in terms of density of states and spin density isosurface analysis across the transition. The loss of mirror plane symmetry in the P4/n phase activates the P 3s orbitals to participate in the magnetic interaction, giving rise to a competitive ferromagnetic superexchange interaction, in addition to antiferromagnetic direct one, and consequently initiating the magnetic ordering transition. The insights revealed here not only deepen our understanding of the electronic properties and structural and magnetic ordering transitions under high pressure of square lattice antiferromagnets AMoOPO4Cl (A = K, Rb), but also push the boundaries of knowledge by recognizing the role of nonmagnetic ions P 3s in magnetic exchange coupling.

17.
Compr Rev Food Sci Food Saf ; 23(2): e13305, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38379388

RESUMEN

Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.


Asunto(s)
Antiinfecciosos , Alimentos Fermentados , Probióticos , Humanos , Alimentos Funcionales , Antioxidantes
18.
Biol Pharm Bull ; 47(2): 499-508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38382928

RESUMEN

To reveal the mechanism of Shenkang injection (SKI) in the treatment of chronic renal failure, and verify the key pathway. In this work, an untargeted metabolomics approach was performed by LC-MS coupled with multivariate statistical analysis to provide new insights into therapeutic mechanism of SKI. Hematoxylin-eosin (H&E) Staining and Immunohistochemistry were used to evaluate the effects of drug treatment, Western blot was used to verify the critical pathway. Then, a total of 44 potential biomarkers of chronic renal failure (CRF) were identified and reversed regulation, including 2,8-dihydroxypurine, 5-methoxytryptophan, uric acid, acetylcarnitine, taurine, etc. Mainly concerned with arginine and proline metabolism, purine metabolism, histidine metabolism, etc. Pathological examination showed that the renal interstitium of SKI group was significantly improved, with fewer inflammatory cells and thinner vascular walls compared with the model group. Immunohistochemical results showed that the expression of α-smooth muscle actin (α-SMA) was decreased, and the expression of E-cadherin was increased in CRF model group, and the two indicators were reversed regulation in SKI injection, indicating that the degree of fibrosis was relieved. Critical signaling pathway phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and nuclear factor-kappaB (NF-κB) protein expressions were significantly inhibited. This study was the first to employ metabolomics to elucidate the underlying mechanisms of SKI in chronic renal failure. The results would provide some support for clinical application of traditional Chinese medicines in clinic.


Asunto(s)
Medicamentos Herbarios Chinos , Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Vías Clínicas , Riñón , Fallo Renal Crónico/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico
19.
Front Genet ; 15: 1349673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317660

RESUMEN

Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.

20.
J Hazard Mater ; 466: 133560, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246054

RESUMEN

Global electronic waste (e-waste) generation continues to grow. The various pollutants released during precarious e-waste disposal activities can contribute to human oxidative stress. This study encompassed 129 individuals residing near e-waste dismantling sites in China, with elevated urinary concentrations of e-waste-related pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), organophosphorus flame retardants (OPFRs), bisphenols (BPs), and phthalate esters (PAEs). Utilizing an explainable machine learning framework, the study quantified the co-exposure effects of these pollutants, finding that approximately 23% and 18% of the variance in oxidative DNA damage and lipid peroxidation, respectively, was attributable to these substances. Heavy metals emerged as the most critical factor in inducing oxidative stress, followed by PAHs and PAEs for oxidative DNA damage, and BPs, OPFRs, and PAEs for lipid peroxidation. The interactions between different pollutant classes were found to be weak, attributable to their disparate biological pathways. In contrast, the interactions among congeneric pollutants were strong, stemming from their shared pathways and resultant synergistic or additive effects on oxidative stress. An intelligent analysis system for e-waste pollutants was also developed, which enables more efficient processing of large-scale and dynamic datasets in evolving environments. This study offered an enticing peek into the intricacies of co-exposure effect of e-waste pollutants.


Asunto(s)
Residuos Electrónicos , Contaminantes Ambientales , Retardadores de Llama , Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Eliminación de Residuos , Humanos , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Residuos Electrónicos/análisis , Metales Pesados/análisis , Estrés Oxidativo , Hidrocarburos Policíclicos Aromáticos/análisis , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...