Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908856

RESUMEN

BACKGROUND: Tertiary lymphoid structures (TLSs) serve as organized lymphoid aggregates that influence immune responses within the tumor microenvironment. This study aims to investigate the characteristics and clinical significance of TLSs and tumor-infiltrating lymphocytes (TILs) in clear cell renal cell carcinoma (ccRCC). METHODS: TLSs and TILs were analyzed comprehensively in 754 ccRCC patients from 6 academic centers and 532 patients from The Cancer Genome Atlas. Integrated analysis was performed based on single-cell RNA-sequencing datasets from 21 ccRCC patients to investigate TLS heterogeneity in ccRCC. Immunohistochemistry and multiplex immunofluorescence were applied. Cox regression and Kaplan-Meier analyses were used to reveal the prognostic significance. RESULTS: The study demonstrated the existence of TLSs and TILs heterogeneities in the ccRCC microenvironment. TLSs were identified in 16% of the tumor tissues in 113 patients. High density (>0.6/mm2) and maturation of TLSs predicted good overall survival (OS) (p<0.01) in ccRCC patients. However, high infiltration (>151) of scattered TILs was an independent risk factor of poor ccRCC prognosis (HR=14.818, p<0.001). The presence of TLSs was correlated with improved progression-free survival (p=0.002) and responsiveness to therapy (p<0.001). Interestingly, the combination of age and TLSs abundance had an impact on OS (p<0.001). Higher senescence scores were detected in individuals with immature TLSs (p=0.003). CONCLUSIONS: The study revealed the contradictory features of intratumoral TLSs and TILs in the ccRCC microenvironment and their impact on clinical prognosis, suggesting that abundant and mature intratumoral TLSs were associated with decreased risks of postoperative ccRCC relapse and death as well as favorable therapeutic response. Distinct spatial distributions of immune infiltration could reflect effective antitumor or protumor immunity in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Linfocitos Infiltrantes de Tumor , Estructuras Linfoides Terciarias , Microambiente Tumoral , Humanos , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Estructuras Linfoides Terciarias/inmunología , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/genética , Femenino , Masculino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Pronóstico , Estudios de Cohortes , Anciano
2.
Cancer Lett ; 593: 216963, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768682

RESUMEN

Neoadjuvant tyrosine kinase inhibitor (TKI) therapy is an important treatment option for advanced renal cell carcinoma (RCC). Many RCC patients may fail to respond or be resistant to TKI therapy. We aimed to explore the key mechanisms of neoadjuvant therapy résistance. We obtained tumor samples from matched pre-treatment biopsy and post-treatment surgical samples and performed single-cell RNA sequencing. Sunitinib-resistant ccRCC cell lines were established. Ferroptosis was detected by ferrous ion and lipid peroxidation levels. Tumor growth and resistance to Sunitinib was validated in vitro and vivo. Immunohistochemistry was used to validate the levels key genes and lipid peroxidation. Multi-center cohorts were included, including TCGA, ICGC, Checkmate-025 and IMmotion151 clinical trial. Survival analysis was performed to identify the associated clinical and genomic variables. Intratumoral heterogeneity was first described in the whole neoadjuvant management. The signature of endothelial cells was correlated with drug sensitivity and progression-free survival. Ferroptosis was shown to be the key biological program in malignant cell resistance. We observed tissue lipid peroxidation was negatively correlated with IL6 and tumor response. TKI-resistant cell line was established. SLC7A11 knockdown promoted cell growth and lipid peroxidation, increased the ferroptosis level, and suppressed the growth of tumor xenografts significantly (P < 0.01). IL6 could reverse the ferroptosis and malignant behavior caused by SLC7A11 (-) via JAK2/STAT3 pathway, which was rescued by the ferroptosis inducer Erastin. Our data indicate that ferroptosis is a novel strategy for advanced RCC treatment, which activated by IL6, providing a new idea for resistance to TKIs.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Carcinoma de Células Renales , Resistencia a Antineoplásicos , Ferroptosis , Neoplasias Renales , Terapia Neoadyuvante , Sunitinib , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Neoplasias Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Terapia Neoadyuvante/métodos , Sunitinib/farmacología , Animales , Línea Celular Tumoral , Ratones , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores de Proteínas Quinasas/farmacología , Peroxidación de Lípido/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Femenino , Masculino , Terapia Molecular Dirigida , Interleucina-6/metabolismo , Interleucina-6/genética , Progresión de la Enfermedad
3.
BMC Med Genomics ; 17(1): 121, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702698

RESUMEN

BACKGROUND: Kidney renal papillary cell carcinoma (KIRP) is the second most prevalent malignant cancer originating from the renal epithelium. Nowadays, cancer stem cells and stemness-related genes (SRGs) are revealed to play important roles in the carcinogenesis and metastasis of various tumors. Consequently, we aim to investigate the underlying mechanisms of SRGs in KIRP. METHODS: RNA-seq profiles of 141 KIRP samples were downloaded from the TCGA database, based on which we calculated the mRNA expression-based stemness index (mRNAsi). Next, we selected the differentially expressed genes (DEGs) between low- and high-mRNAsi groups. Then, we utilized weighted gene correlation network analysis (WGCNA) and univariate Cox analysis to identify prognostic SRGs. Afterwards, SRGs were included in the multivariate Cox regression analysis to establish a prognostic model. In addition, a regulatory network was constructed by Pearson correlation analysis, incorporating key genes, upstream transcription factors (TFs), and downstream signaling pathways. Finally, we used Connectivity map analysis to identify the potential inhibitors. RESULTS: In total, 1124 genes were characterized as DEGs between low- and high-RNAsi groups. Based on six prognostic SRGs (CCKBR, GPR50, GDNF, SPOCK3, KC877982.1, and MYO15A), a prediction model was established with an area under curve of 0.861. Furthermore, among the TFs, genes, and signaling pathways that had significant correlations, the CBX2-ASPH-Notch signaling pathway was the most significantly correlated. Finally, resveratrol might be a potential inhibitor for KIRP. CONCLUSIONS: We suggested that CBX2 could regulate ASPH through activation of the Notch signaling pathway, which might be correlated with the carcinogenesis, development, and unfavorable prognosis of KIRP.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Células Madre Neoplásicas , Humanos , Pronóstico , Neoplasias Renales/genética , Neoplasias Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Biomarcadores de Tumor/genética , Femenino , Perfilación de la Expresión Génica , Persona de Mediana Edad , Transducción de Señal/genética
4.
Front Oncol ; 14: 1355551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800374

RESUMEN

Background: Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods: We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results: 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion: Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.

5.
J Orthop Translat ; 46: 65-78, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38808263

RESUMEN

Backgroud: Iron overload is a prevalent condition in the elderly, often associated with various degenerative diseases, including intervertebral disc degeneration (IDD). Nevertheless, the mechanisms responsible for iron ion accumulation in tissues and the mechanism that regulate iron homeostasis remain unclear. Transferrin receptor-1 (TFR1) serves as the primary cellular iron gate, playing a pivotal role in controlling intracellular iron levels, however its involvement in IDD pathogenesis and the underlying mechanism remains obscure. Methods: Firstly, IDD mice model was established to determine the iron metabolism associated proteins changes during IDD progression. Then CEP chondrocytes were isolated and treated with TBHP or pro-inflammatory cytokines to mimic pathological environment, western blotting, immunofluorescence assay and tissue staining were employed to explore the underlying mechanisms. Lastly, TfR1 siRNA and Feristatin II were employed and the degeneration of IDD was examined using micro-CT and immunohistochemical analysis. Results: We found that the IDD pathological environment, characterized by oxidative stress and pro-inflammatory cytokines, could enhance iron influx by upregulating TFR1 expression in a HIF-2α dependent manner. Excessive iron accumulation not only induces chondrocytes ferroptosis and exacerbates oxidative stress, but also triggers the innate immune response mediated by c-GAS/STING, by promoting mitochondrial damage and the release of mtDNA. The inhibition of STING through siRNA or the reduction of mtDNA replication using ethidium bromide alleviated the degeneration of CEP chondrocytes induced by iron overload. Conclusion: Our study systemically explored the role of TFR1 mediated iron homeostasis in IDD and its underlying mechanisms, implying that targeting TFR1 to maintain balanced iron homeostasis could offer a promising therapeutic approach for IDD management. The translational potential of this article: Our study demonstrated the close link between iron metabolism dysfunction and IDD, indicated that targeting TfR1 may be a novel therapeutic strategy for IDD.

6.
Adv Mater ; 36(27): e2402580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38630978

RESUMEN

Inherently immunogenic materials offer enormous prospects in enhancing vaccine efficacy. However, the understanding and improving material adjuvanticity remain elusive. Herein how the structural presentation of immunopotentiators in a material governs the dynamic dialogue between innate and adaptive immunity for enhanced cancer vaccination is reported. The immunopotentiator manganese into six differing structures that resemble the architectures of two types of pathogens (spherical viruses or rod-like bacteria) is precisely manipulated. The results reveal that innate immune cells accurately sense and respond to the architectures, of which two outperformed material candidates (151 nm hollow spheres and hollow microrods with an aspect ratio of 4.5) show higher competence in creating local proinflammatory environment with promoted innate immune cell influx and stimulation on dendritic cells (DCs). In combination with viral peptides, model proteins, or cell lysate antigens, the outperformed microrod material remarkably primes antigen-specific CD8 cytolytic T cells. In prophylactic and therapeutic regimens, the microrod adjuvanted vaccines display optimal aptitude in tumor suppression in four aggressive murine tumor models, by promoting the infiltration of heterogeneous cytolytic effector cells while decreasing suppressive immunoregulatory populations in tumors. This study demonstrates that a rationally selected architecture of immunogenic materials potentially advances the clinical reality of cancer vaccination.


Asunto(s)
Vacunas contra el Cáncer , Células Dendríticas , Inmunoterapia , Animales , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Ratones , Células Dendríticas/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Inmunidad Innata/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos C57BL , Manganeso/química , Movimiento Celular/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología
7.
Cancer Lett ; 587: 216725, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38364963

RESUMEN

Next-generation androgen receptor signaling inhibitors (ARSIs), such as enzalutamide (Enza) and darolutamide (Daro), are initially effective for the treatment of advanced prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). However, patients often relapse and develop cross-resistance, which consequently makes drug resistance an inevitable cause of CRPC-related mortality. By conducting a comprehensive analysis of GEO datasets, CRISPR genome-wide screening results, ATAC-seq data, and RNA-seq data, we systemically identified PAK1 as a significant contributor to ARSI cross-resistance due to the activation of the PAK1/RELA/hnRNPA1/AR-V7 axis. Inhibition of PAK1 followed by suppression of NF-κB pathways and AR-V7 expression effectively overcomes ARSI cross-resistance. Our findings indicate that PAK1 represents a promising therapeutic target gene for the treatment of ARSI cross-resistant PCa patients in the clinic. STATEMENT OF SIGNIFICANCE: PAK1 drives ARSI cross-resistance in prostate cancer progression.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Detección Precoz del Cáncer , Recurrencia Local de Neoplasia/genética , Nitrilos/farmacología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
8.
Int J Med Sci ; 21(3): 496-507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250606

RESUMEN

Background: Pyroptosis is a programmed death mode of inflammatory cells, which is closely related to tumor progression and tumor immunity. Clear cell renal cell carcinoma (ccRCC) is the major pathological type of renal cell carcinoma (RCC) with poor prognosis. Many theories have tried to clarify the mechanism in the development of ccRCC, but the role of pyroptosis in ccRCC has not been well described. The main purpose of this study is to explore the role of pyroptosis in ccRCC and establish a novel prognosis prediction model of pyroptosis-related molecular signatures for ccRCC. Methods: In the present study, we made a systematical analysis of the association between ccRCC RNA transcriptome sequencing data from The Cancer Genome Atlas (TCGA) database [which included 529 ccRCC patients who were randomized in a training cohort (n=265) and an internal validation cohort (n=264)] and 40 pyroptosis-related genes (PRGs), from which four genes (CASP9, GSDME, IL1B and TIRAP) were selected to construct a molecular prediction model of PRGs for ccRCC. In addition, a cohort of 114 ccRCC patients from Shanghai Eastern Hepatobiliary Surgery Hospital (EHSH) was used as external data to verify the effectiveness of the model by immunohistochemistry. Moreover, the biological functions of the four PRGs were also verified in ccRCC 786-O and 769-P cells by Western blot (WB), CCK-8 cell proliferation, and Transwell invasion assays. Results: The model was able to differentiate high-risk patients from low-risk patients, and this differentiation was consistent with their clinical survival outcomes. In addition, the four PRGs also affected the ability of cell proliferation and invasion in ccRCC. Conclusion: The prediction model of pyroptosis-related molecular markers developed in this study may prove to be a novel understanding for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Piroptosis/genética , China , Pronóstico , Neoplasias Renales/genética
9.
FEMS Microbiol Lett ; 3712024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38258560

RESUMEN

Autophagy is pivotal in maintaining intracellular homeostasis, which involves various biological processes, including cellular senescence and lifespan modulation. Being an important member of the protein O-mannosyltransferase (PMT) family of enzymes, Pmt1p deficiency can significantly extend the replicative lifespan (RLS) of yeast cells through an endoplasmic reticulum (ER) unfolded protein response (UPR) pathway, which is participated in protein homeostasis. Nevertheless, the mechanisms that Pmt1p regulates the lifespan of yeast cells still need to be explored. In this study, we found that the long-lived PMT1 deficiency strain (pmt1Δ) elevated the expression levels of most autophagy-related genes, the expression levels of total GFP-Atg8 fusion protein and free GFP protein compared with wild-type yeast strain (BY4742). Moreover, the long-lived pmt1Δ strain showed the greater dot-signal accumulation from GFP-Atg8 fusion protein in the vacuole lumen through a confocal microscope. However, deficiency of SAC1 or ATG8, two essential components of the autophagy process, decreased the cell proliferation ability of the long-lived pmt1Δ yeast cells, and prevented the lifespan extension. In addition, our findings demonstrated that overexpression of ATG8 had no potential effect on the RLS of the pmt1Δ yeast cells, and the maintained incubation of minimal synthetic medium lacking nitrogen (SD-N medium as starvation-induced autophagy) inhibited the cell proliferation ability of the pmt1Δ yeast cells with the culture time, and blocked the lifespan extension, especially in the SD-N medium cultured for 15 days. Our results suggest that the long-lived pmt1Δ strain enhances the basal autophagy activity, while deficiency of SAC1 or ATG8 decreases the cell proliferation ability and shortens the RLS of the long-lived pmt1Δ yeast cells. Moreover, the maintained starvation-induced autophagy impairs extension of the long-lived pmt1Δ yeast cells, and even leads to the cell death.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Monoéster Fosfórico Hidrolasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Muerte Celular , Proliferación Celular/genética , Monoéster Fosfórico Hidrolasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Exp Cell Res ; 434(1): 113857, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008278

RESUMEN

Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Proteínas Represoras , Masculino , Animales , Ratones , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Antígeno B7-H1/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/patología , Carcinogénesis/genética , Transformación Celular Neoplásica , Mutación , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Chaperonas Moleculares/genética , Proteínas Co-Represoras/genética
12.
iScience ; 26(12): 108370, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38034348

RESUMEN

Previous bulk RNA sequencing or whole genome sequencing on clear cell renal cell carcinoma (ccRCC) subtyping mainly focused on ccRCC cell origin or the complex tumor microenvironment (TME). Based on the single-cell RNA sequencing (scRNA-seq) data of 11 primary ccRCC specimens, cancer stem-cell-like subsets could be differentiated into five trajectories, whereby we further classified ccRCC cells into three groups with diverse molecular features. These three ccRCC subgroups showed significantly different outcomes and potential targets to tyrosine kinase inhibitors (TKIs) or immune checkpoint inhibitors (ICIs). Tumor cells in three differentiation directions exhibited distinct interactions with other subsets in the ccRCC niches. The subtyping model was examined through immunohistochemistry staining in our ccRCC cohort and validated the same classification effect as the public patients. All these findings help gain a deeper understanding about the pathogenesis of ccRCC and provide useful clues for optimizing therapeutic schemes based on the molecular subtype analysis.

13.
Life Sci ; 333: 122162, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820754

RESUMEN

AIM: The occurrence and progression of intervertebral disc degeneration (IDD) are significantly influenced by the cartilaginous endplate (CEP). Pinocembrin (PIN), a type of flavonoid present in propolis and botanicals, demonstrates both antioxidant and anti-inflammatory characteristics, which could potentially be utilized in management. Therefore, it is crucial to investigate how PIN protects against CEP degeneration and its mechanisms, offering valuable insights for IDD therapy. MATERIALS AND METHODS: To investigate the protective impact of PIN in vivo, we created the IDD mouse model through bilateral facet joint transection. In vitro, an IDD pathological environment was mimicked by applying TBHP to treat endplate chondrocytes. KEY FINDINGS: In vivo, compared with the IDD group, the mouse in the PIN group effectively mitigates IDD progression and CEP calcification. In vitro, the activation of the Nrf-2 pathway improves the process of Parkin-mediated autophagy in mitochondria and decreases ferroptosis in chondrocytes. This enhancement promotes cell survival by addressing the imbalance of redox during pathological conditions related to IDD. Knocking down Nrf-2 with siRNA fails to provide protection to endplate chondrocytes against apoptosis and degeneration. SIGNIFICANCE: The Nrf-2-mediated activation of mitochondrial autophagy and suppression of ferroptosis play a crucial role in safeguarding against oxidative stress-induced degeneration and calcification of CEP through the protective function of PIN. To sum up, this research offers detailed explanations about how PIN can protect against apoptosis and calcification in CEP, providing valuable information about the development of IDD and suggesting possible treatment approaches.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Ratones , Animales , Condrocitos/metabolismo , Estrés Oxidativo , Cartílago/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Apoptosis , Disco Intervertebral/metabolismo
14.
J Endourol ; 37(11): 1184-1190, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37725564

RESUMEN

Background: Recently a novel omnidirectional (OD) ureteral access sheath (UAS) has been developed. By retrospectively reviewing and comparing the flexible ureteroscopic lithotripsy (FURL) cases in our institution with either a conventional Cook UAS or an OD UAS in the past year, we shared our experience of the safety, efficacy, and relevant issues on the usage of OD UAS. Materials and Methods: The medical history and surgery details of 199 patients with kidney stones or ureterojunctional stones who underwent FURL in Xinhua Hospital, including 61 Cook UAS and 138 OD UAS, were reviewed and compared. The maximal deflection angle was measured by steering four different types of ureteroscopes to bend the OD UAS in different states. Result: The deflection angle of OD UAS was ∼110° to 130° free load, and 90° to 130° when loaded with different instruments. The stone burden and position were similar in two groups. Given a similar prestent ratio and operation time, the OD UAS group achieved a higher single-session stone-free rate (SFR) (63.9% vs 94.2%, p < 0.0001) at 1-month follow-up evaluated by a CT scan. Conclusion: OD UAS is a novel device with high safety and efficacy. The unique flexible design allows it to bend with the ureteroscope and enter renal calices and be set close to the stone. Combined with the suction port, OD UAS contributes greatly to dealing with large-burden kidney stones, shortens operation time, and improves single-session SFR.


Asunto(s)
Cálculos Renales , Uréter , Humanos , Ureteroscopía , Estudios Retrospectivos , Uréter/cirugía , Cálculos Renales/cirugía , Ureteroscopios , Resultado del Tratamiento
15.
Redox Biol ; 66: 102860, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633049

RESUMEN

Mitochondrial dysfunction is one of the key features of acute kidney injury (AKI) and associated fibrosis. Leucine-rich repeat kinase 2 (LRRK2) is highly expressed in kidneys and regulates mitochondrial homeostasis. How it functions in AKI is unclear. Herein we reported that LRRK2 was dramatically downregulated in AKI kidneys. Lrrk2-/- mice exhibited less severity of AKI when compared to wild-type counterparts with less mitochondrial fragmentation and decreased reactive oxygen species (ROS) production in proximal renal tubular cells (PTCs) due to mitofusin 2 (MFN2) accumulation. Overexpression of LRRK2 in human PTC cell lines promoted LRRK2-MKK4/JNK-dependent phosphorylation of MFN2Ser27 and subsequently ubiquitination-mediated MFN2 degradation, which in turn exaggerated mitochondrial damage upon ischemia/reperfusion (I/R) mimicry treatment. Lrrk2 deficiency also alleviated AKI-to-chronic kidney disease (CKD) transition with less fibrosis. In vivo pretreatment of LRRK2 inhibitors attenuated the severity of AKI as well as CKD, potentiating LRRK2 as a novel target to alleviate AKI and fibrosis.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Riñón , Lesión Renal Aguda/genética , Mitocondrias/genética , Túbulos Renales Proximales , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética
16.
Cancer Cell Int ; 23(1): 186, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649034

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC) is a hypermetabolic disease. Abnormal up-regulation of glycolytic signaling promotes tumor growth, and glycolytic metabolism is closely related to immunotherapy of renal cancer. The aim of the present study was to determine whether and how the glycolysis-related biomarker TCIRG1 affects aerobic glycolysis, the tumor microenvironment (TME) and malignant progression of clear cell renal cell carcinoma (ccRCC). METHODS: Based on The Cancer Genome Atlas (TCGA, n = 533) and the glycolysis-related gene set from MSigDB, we identified the glycolysis-related gene TCIRG1 by bioinformatics analysis, analyzed its immunological properties in ccRCC and observed how it affected the biological function and glycolytic metabolism using online databases such as TIMER 2.0, UALCAN, LinkedOmics and in vitro experiments. RESULTS: It was found that the expression of TCIRG1, was significantly increased in ccRCC tissue, and that high TCIRG1 expression was associated with poor overall survival (OS) and short progression-free interval (PFI). In addition, TCIRG1 expression was highly correlated with the infiltration immune cells, especially CD4+T cell Th1, CD8+T cell, NK cell, and M1 macrophage, and positively correlated with PDCD1, CTLA4 and other immunoinhibitors, CCL5, CXCR3 and other chemokines and chemokine receptors. More importantly, TCIRG1 may regulate aerobic glycolysis in ccRCC via the AKT/mTOR signaling pathway, thereby affecting the malignant progression of ccRCC cell lines. CONCLUSIONS: Our results demonstrate that the glycolysis-related biomarker TCIRG1 is a tumor-promoting factor by affecting aerobic glycolysis and tumor immune microenvironment in ccRCC, and this finding may provide a new idea for the treatment of ccRCC by combination of metabolic intervention and immunotherapy.

17.
Front Oncol ; 13: 1137346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554168

RESUMEN

Wilms tumor, originating from aberrant fetal nephrogenesis, is the most common renal malignancy in childhood. The overall survival of children is approximately 90%. Although existing risk-stratification systems are helpful in identifying patients with poor prognosis, the recurrence rate of Wilms tumors remains as high as 15%. To resolve this clinical problem, diverse studies on the occurrence and progression of the disease have been conducted, and the results are encouraging. A series of molecular biomarkers have been identified with further studies on the mechanism of tumorigenesis. Some of these show prognostic value and have been introduced into clinical practice. Identification of these biomarkers can supplement the existing risk-stratification systems. In the future, more biomarkers will be discovered, and more studies are required to validate their roles in improving the detection rate of occurrence or recurrence of Wilms tumor and to enhance clinical outcomes.

18.
Aging (Albany NY) ; 15(11): 5215-5227, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315299

RESUMEN

Renal cell carcinoma (RCC) is one of the most common malignancies. Despite the rapid development of the oncology research and surgical treatment, the prognosis of RCC has not significantly improved. Thus, exploration of the pathological molecular mechanism and development of new therapeutic targets of RCC are of great importance. Herein, by bioinformatic analysis and in vitro cell experiments, we report that, the expression of pseudouridine synthase 1 (PUS1), belonging to the family of PUS enzymes that participate in RNA modifications, is closely associated with RCC progression. In addition, the upregulated PUS1 expression results in the elevated RCC cancer cell viability, migration, invasion and colony formation ability, whereas the decreased PUS1 expression exerts the opposite effects on RCC cells. Thus, our findings show the potential role of PUS1 in RCC cells, providing with evidence that PUS1 is involved in RCC progression, which may help contribute to RCC diagnosis and intervention in clinic.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Proliferación Celular/genética , Biomarcadores , Movimiento Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
19.
Transl Androl Urol ; 12(4): 659-672, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37181236

RESUMEN

Background: Clear cell renal cell carcinoma (ccRCC) is a highly heterogeneous tumor and is the most common subtype of renal cell carcinoma (RCC). Surgery is used to cure most early ccRCC, but the 5-year overall survival (OS) of ccRCC patients is far from satisfactory. Thus, new prognostic features and therapeutic targets for ccRCC need to be identified. Since complement factors can influence tumor development, we aimed to develop a model to predict the prognosis of ccRCC through complement-related genes. Methods: Differentially expressed genes were screened from an International Cancer Genome Consortium (ICGC) data set, and the genes associated with prognosis were screened by univariate regression and least absolute shrinkage and selection operator-Cox regression, and column line plots were generated using the rms R package to predict OS. The C-index was used to show the accuracy of the survival prediction and the prediction effects were verified using a data set from The Cancer Genome Atlas (TCGA). An immuno-infiltration analysis was performed with CIBERSORT analysis, and a drug sensitivity analysis was performed using the Gene Set Cancer Analysis (GSCA) (http://bioinfo.life.hust.edu.cn/GSCA/#/) database. Results: We identified 5 complement-related genes (i.e., A2M, APOBEC3G, COL4A2, DOCK4, and NOTCH4) for risk-score modeling to predict OS at 1, 2, 3, and 5 years, and the C-index of the prediction mode was 0.795. In addition, the model was successfully validated in TCGA data set. The CIBERSORT analysis showed that M1 macrophages were downregulated in the high-risk group. The GSCA database analysis showed that DOCK4, COL4A2, and A2M were positively correlated with the half maximal inhibitory concentration (IC50) of 10 drugs and small molecules, and COL4A2, NOTCH4, A2M, and APOBEC3G were negatively correlated with the IC50 of dozens of different drugs and small molecules. Conclusions: We developed and validated a survival prognostic model based on 5 complement-related genes for ccRCC. We also elucidated the relationship with tumor immune status and developed a new predictive tool for clinical purposes. In addition, our results showed that A2M, APOBEC3G, COL4A2, DOCK4, and NOTCH4 may be potential targets for the treatment of ccRCC in the future.

20.
Int Immunopharmacol ; 119: 110159, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37054647

RESUMEN

BACKGROUND: Cartilage endplate (CEP) degeneration is an important initiating factor leading to intervertebral disc degeneration (IVDD). Astaxanthin (Ast) is a natural lipid-soluble and red-orange carotenoid which possesses various biological activities, including antioxidant, anti-inflammatory, and anti-aging effects in multiple organisms. However, the effects and mechanism of Ast on endplate chondrocytes remain largely unknown. The objective of the current study was to investigate the effects and of Ast on CEP degeneration and its underlying molecular mechanisms. METHODS: Tert-butyl hydroperoxide (TBHP) was used to mimic the IVDD pathological environment. We investigated the effects of Ast on the Nrf2 signaling pathway and damage-associated events. The IVDD model was constructed by surgical resection of L4 posterior elements to explore the role of Ast in vivo. RESULTS: We found that the activation of the Nrf-2/HO-1 signaling pathway was enhanced by Ast, thus promoted mitophagy process, inhibited oxidative stress and CEP chondrocytes ferroptosis, eventually ameliorated extracellular matrix (ECM) degradation, CEP calcification and endplate chondrocytes apoptosis. Knockdown of Nrf-2 using siRNA inhibited Ast induced mitophagy process and its protective effect. Moreover, Ast inhibited oxidative stimulation-induced NF-κB activity and could ameliorate the inflammation response. The results also were confirmed by experiments in vivo, Ast alleviated IVDD development and CEP calcification. CONCLUSIONS: Ast could protect vertebral cartilage endplate against oxidative stress and degeneration via activating Nrf-2/HO-1 pathway. Our results imply that Ast may serve as a potential therapeutic agent for IVDD progression and treatment.


Asunto(s)
Calcinosis , Degeneración del Disco Intervertebral , Humanos , Cartílago/metabolismo , Condrocitos , Estrés Oxidativo , Transducción de Señal , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Calcinosis/metabolismo , Calcinosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...