Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(37): 15731-15742, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528054

RESUMEN

The storage of sodium ions with carbon materials has huge potential for large-scale application due to its resource-rich and environmental advantages. However, how to realize high power density, high energy density and long cycle life are the bottlenecks restricting its development. Herein, by using a facile synthesis strategy, a carbon-based framework with a hierarchical structure and intrinsic heteroatom sites which are the characteristics contributing to ultrahigh rate and capacity has been achieved. As a result, the hierarchical carbon-based material exhibits excellent performance when used as both the anode and cathode for sodium-ion capacitors (SICs), which can deliver a high energy density of 224 W h kg-1 (at 180 W kg-1), an ultrahigh power density of 17 160 W kg-1 (at 128 W h kg-1) and ultralong cycle life (91% capacity retention after 10 000 cycles at 2 A g-1), outperforming most of the previously reported SICs with other configurations.

2.
Adv Sci (Weinh) ; 8(2): 2003178, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33511020

RESUMEN

Sodium metal anodes combine low redox potential (-2.71 V versus SHE) and high theoretical capacity (1165 mAh g-1), becoming a promising anode material for sodium-ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan. Herein, an oxygen-doped carbon foam (OCF) derived from starch is reported. Heteroatom doping can significantly reduce the nucleation resistance of sodium metal; combined with its rich pore structure and large specific surface area, OCF provides abundant nucleation sites to effectively guide the nucleation and subsequent growth of sodium metal, and the nature of this foam can accommodate the deposited sodium. Furthermore, a more uniform, robust, and stable SEI layer is observed on the surface of OCF electrode, so it can maintain ultra-high reversibility and excellent integrity for a long time without dendritic growth. As a result, when the current density is 10 mA cm-2, the electrode can maintain stable 2000 cycles and the coulombic efficiency can reach to 99.83%. Na@OCF||Na3V2(PO4)3 full cell also has extremely high capacity retention of about 97.53% over 150 cycles. These results provide a simple but effective method for achieving the safety and commercialization of sodium metal anode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA