Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826312

RESUMEN

Chikungunya virus (CHIKV), which induces chikungunya fever and chronic arthralgia, is an emerging public health concern. Safe and efficient vaccination strategies are needed to prevent or mitigate virus-associated acute and chronic morbidities for preparation of future outbreaks. Eilat (EILV)/CHIKV, a chimeric alphavirus which contains the structural proteins of CHIKV and the non-structural proteins of EILV, does not replicate in vertebrate cells. The chimeric virus was previously reported to induce protective adaptive immunity in mice. Here, we assessed the capacity of the virus to induce quick and durable protection in cynomolgus macaques. EILV/CHIKV protected macaques from wild-type (WT) CHIKV infection one year after a single dose vaccination. Transcriptome and in vitro functional analyses reveal that the chimeric virus triggered toll-like receptor signaling and T cell, memory B cell and antibody responses in a dose-dependent manner. Notably, EILV/CHIKV preferentially induced more durable, robust, and broader repertoire of CHIKV-specific T cell responses, compared to a live attenuated CHIKV 181/25 vaccine strain. The insect-based chimeric virus did not cause skin hypersensitivity reactions in guinea pigs sensitized to mosquito bites. Furthermore, EILV/CHIKV induced strong neutralization antibodies and protected cynomolgus macaques from WT CHIKV infection within six days post vaccination. Transcriptome analysis also suggest that the chimeric virus induction of multiple innate immune pathways, including Toll-like receptor signaling, type I IFN and IL-12 signaling, antigen presenting cell activation, and NK receptor signaling. Our findings suggest that EILV/CHIKV is a safe, highly efficacious vaccine, and provides both rapid and long-lasting protection in cynomolgus macaques.

2.
Sci Data ; 11(1): 587, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839790

RESUMEN

Aedes aegypti is a primary vector for transmitting various arboviruses, including Yellow fever, dengue and Zika virus. The mosquito midgut is the principal organ for blood meal digestion, nutrient absorption and the initial site of arbovirus infection. Although a previous study delineated midgut's transcriptome of Ae. aegypti at the single-nucleus resolution, there still lacks an established protocol for isolating and RNA sequencing of single cells of Ae. aegypti midgut, which is required for investigating arbovirus-midgut interaction at the single-cell level. Here, we established an atlas of the midgut cells for Ae. aegypti by single-cell RNA sequencing. We annotated the cell clusters including intestinal stem cells/enteroblasts (ISC/EB), cardia cells (Cardia), enterocytes (EC, EC-like), enteroendocrine cells (EE), visceral muscle (VM), fat body cells (FBC) and hemocyte cells (HC). This study will provide a foundation for further studies of arbovirus infection in mosquito midgut at the single-cell level.


Asunto(s)
Aedes , Análisis de la Célula Individual , Animales , Aedes/genética , Aedes/citología , Femenino , Análisis de Secuencia de ARN , Transcriptoma , Tracto Gastrointestinal/virología , Mosquitos Vectores/genética , Sistema Digestivo/citología
3.
J Dairy Sci ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945262

RESUMEN

The uptake of AA in mammary tissues is affected by prolactin (PRL). To investigate whether PRL-induced AA uptake is involved in L-type AA transporter 1 (LAT1), we analyzed the changes of AA in the medium of dairy cow mammary epithelial cells in the presence of PRL or PRL plus BCH, an inhibitor of LAT1. Then Western blot and luciferase assay were used to detect the regulation mechanism of PRL on LAT1 expression and function. Our results showed that Thr, Val, Met, Ile, Leu, Tyr, Lys, Phe, and His are LAT1 substrates and could be transported into mammary epithelial cells via LAT1. PRL stimulation increased the uptake of most AA into mammary epithelial cells of dairy cows, however, inhibition of LAT1 transport activity reduced PRL-induced AA uptake, suggesting that the effect of PRL on AA transport depends on LAT1 expression and function. PRL stimulation upregulated LAT1 expression and plasma membrane location not only in dairy cow mammary epithelial cells, but also in mouse mammary epithelial cell line HC11. Western blot showed that PI3K-AKT-mTOR signaling could be activated in PRL-stimulated mammary epithelial cells. Treatment of cells with LY294002 decreased PI3K-AKT-mTOR activation, as well LAT1 expression, that in turn decreased milk protein synthesis. Luciferase assay showed PRL treatment increased the promoter activity of LAT1 promoter fragment -419∼-86 bp. Treatment of cells with LY294002, an inhibitor of PI3K, or SC79, an activator of AKT abolished or promoted the transcriptional activity of this promoter fragment in the presence of PRL. These results suggested that the -419∼-86 bp fragment of LAT1 promoter mediates the action of PI3K-AKT-mTOR signaling on LAT1 transcription in mammary epithelial cells of dairy cows, which in turn increased LAT1 expression and AA uptake.

4.
Cell ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38876107

RESUMEN

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

5.
Int J Biol Macromol ; 271(Pt 1): 132353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763250

RESUMEN

Traditional active packaging materials are easily affected by the environment, resulting in their inability to release active substances in specified quantities at specified times and locations. In this study, MCM-41 was used as a thymol (THY) carrier and added to the potato starch (PS) matrix to design an intelligent release active packaging film based on storage microenvironment. MCM-41 encapsulation improved thermal stability of THY. THY-MCM-41 addition significantly improved the tensile strength (TS, 7.18 MPa) of the film (P < 0.05) and endowed the film excellent gas and water barrier protection. THY release was responsive to temperature and relative humidity (RH), and the First-order model better explained the THY release pattern (R2 > 0.980). The THY-MCM-41/PS film exhibited long-term antibacterial effect during 10-day storage due to the sustained release of THY. Additionally, strawberries packaged in the THY-MCM-41/PS film exhibited the best sensory characteristics during 5-day storage (25 °C and 50 % RH). Overall, the present THY-MCM-41/PS film provides a novel alternative for the sustained release of active substances in order to achieve the excellent preservation of goods such as fruits and vegetables.


Asunto(s)
Embalaje de Alimentos , Solanum tuberosum , Almidón , Timol , Timol/química , Solanum tuberosum/química , Almidón/química , Embalaje de Alimentos/métodos , Dióxido de Silicio/química , Modelos Teóricos , Resistencia a la Tracción , Temperatura , Humedad , Antibacterianos/química , Antibacterianos/farmacología
6.
Anim Biotechnol ; 35(1): 2314100, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38343377

RESUMEN

Matrix metalloproteinase 9 (MMP9) plays a pivotal role in mammary ductal morphogenesis, angiogenesis and glandular tissue architecture remodeling. However, the molecular mechanism of MMP9 expression in mammary epithelial cells of dairy cows remains unclear. This study aimed to explore the underlying mechanism of MMP9 expression. In this study, to determine whether the PI3K/AKT/mTORC1/NF-κB signalling pathway participates in the regulation of MMP9 expression, we treated mammary epithelial cells with specific pharmacological inhibitors of PI3K (LY294002), mTORC1 (Rapamycin) or NF-κB (Celastrol), respectively. Western blotting results indicated that LY294002, Rapamycin and Celastrol markedly decreased MMP9 expression and P65 nuclear translocation. Furthermore, we found that NF-κB (P65) overexpression resulted in elevated expression of MMP9 protein and activation of MMP9 promoter. In addition, we observed that Celastrol markedly decreases P65-overexpression-induced MMP9 promoter activity. Moreover, the results of the promoter assay indicated that the core regulation sequence for MMP9 promoter activation may be located at -420 ∼ -80 bp downstream from the transcription start site. These observations indicated that the PI3K/AKT/mTORC1 signalling pathway is involved in MMP9 expression by regulating MMP9 promoter activity via NF-κB in the mammary epithelial cells of dairy cows.


Asunto(s)
FN-kappa B , Triterpenos Pentacíclicos , Proteínas Proto-Oncogénicas c-akt , Femenino , Bovinos , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Activación Transcripcional , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Epiteliales/metabolismo , Sirolimus/metabolismo , Sirolimus/farmacología
7.
Sci Rep ; 14(1): 496, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177212

RESUMEN

19ISP is a nucleoside-modified mRNA-lipid nanoparticle vaccine that targets 19 Ixodes scapularis proteins. We demonstrate that adult I. scapularis have impaired fecundity when allowed to engorge on 19ISP-immunized rabbits. 19ISP, therefore, has the potential to interrupt the tick reproductive cycle, without triggering some of the other effects associated with acquired tick resistance. This may lead to the development of new strategies to reduce I. scapularis populations in endemic areas.


Asunto(s)
Ixodes , Animales , Conejos , Ixodes/genética , ARN Mensajero/genética , Vacunación , Fertilidad
8.
BMC Genomics ; 25(1): 42, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191283

RESUMEN

Gene-edited mosquitoes lacking a gamma-interferon-inducible lysosomal thiol reductase-like protein, namely (mosGILTnull) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILTnull Anopheles gambiae was therefore compared to wild type (WT) mosquitoes by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILTnull A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg, an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILTnull mosquitoes. These results provide a crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.


Asunto(s)
Anopheles , Animales , Anopheles/genética , Diferenciación Celular , Inmunidad Innata/genética , Mosquitos Vectores/genética , Células Germinativas
9.
Ticks Tick Borne Dis ; 15(1): 102279, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972499

RESUMEN

Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involves immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis. We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26 % and 72 % respectively, compared with 2 % mortality among ticks that fed on control animals. These data indicate that tick bites alter the guinea pig metabolome, and that the tyrosine metabolism pathway can potentially be targeted for I. scapularis control.


Asunto(s)
Ixodes , Animales , Ratones , Cobayas , Ixodes/fisiología , Saliva , Tirosina
10.
PLoS Biol ; 21(10): e3002331, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37862360

RESUMEN

Arthropod-borne pathogens cause some of the most important human and animal infectious diseases. Many vectors acquire or transmit pathogens through the process of blood feeding. Here, we report adiponectin, the most abundant adipocyte-derived hormone circulating in human blood, directly or indirectly inhibits acquisition of the Lyme disease agent, Borrelia burgdorferi, by Ixodes scapularis ticks. Rather than altering tick feeding or spirochete viability, adiponectin or its associated factors induces host histamine release when the tick feeds, which leads to vascular leakage, infiltration of neutrophils and macrophages, and inflammation at the bite site. Consistent with this, adiponectin-deficient mice have diminished pro-inflammatory responses, including interleukin (IL)-12 and IL-1ß, following a tick bite, compared with wild-type animals. All these factors mediated by adiponectin or associated factors influence B. burgdorferi survival at the tick bite site. These results suggest a host adipocyte-derived hormone modulates pathogen acquisition by a blood-feeding arthropod.


Asunto(s)
Grupo Borrelia Burgdorferi , Ixodes , Enfermedad de Lyme , Mordeduras de Garrapatas , Animales , Ratones , Humanos , Adiponectina , Grupo Borrelia Burgdorferi/fisiología , Ixodes/fisiología , Mamíferos
11.
J Agric Food Chem ; 71(43): 16003-16015, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870996

RESUMEN

This study investigated the mechanism underlying acetate-induced orphan G-protein-coupled receptor 43 (GPR43) expression and milk fat production. The mammary epithelial cells of dairy cows were treated with acetate, and the effects of GPR43 on acetate uptake and the expression of lipogenesis-related genes were determined by gas chromatography and quantitative polymerase chain reaction (qPCR), respectively. RNAi, inhibitor treatment, and luciferase assay were used to determine the effect of phosphoinositide 3-kinase-protein kinase B-specificity protein 1 (PI3K-AKT-SP1) signaling on acetate-induced GPR43 expression and function. The results showed that GPR43 was highly expressed in lactating cow mammary tissues, which was related to milk fat synthesis. 12 mM acetate significantly increased the GPR43 expression in mammary epithelial cells of dairy cows. In acetate-treated cells, GPR43 overexpression significantly increased the cellular uptake of acetate, the intracellular triacylglycerol (TAG) content, and acetate-induced lipogenesis gene expression. Acetate activated PI3K-AKT signaling and promoted SP1 translocation from the cytosol into the nucleus, where SP1 bound to the GPR43 promoter and upregulated GPR43 transcription. Moreover, the activation of PI3K-AKT-SP1 by acetate facilitated the trafficking of GPR43 from the cytosol to the plasma membrane. In conclusion, acetate upregulated GPR43 expression and function via PI3K-AKT-SP1 signaling in mammary epithelial cells, thereby increasing milk fat synthesis. These results provide an experimental strategy for improving milk lipid synthesis, which is important to the dairy industry.


Asunto(s)
Lactancia , Leche , Femenino , Animales , Bovinos , Leche/química , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glándulas Mamarias Animales/metabolismo , Acetatos/farmacología , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo
12.
Infect Immun ; 91(11): e0028223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37846980

RESUMEN

Ticks are hematophagous arthropods that use a complex mixture of salivary proteins to evade host defenses while taking a blood meal. Little is known about the immunological and physiological consequences of tick feeding on humans. Here, we performed the first bulk and single-nucleus RNA sequencing (snRNA-seq) of skin and blood of four persons presenting with naturally acquired, attached Ixodes scapularis ticks. Pathways and individual genes associated with innate and adaptive immunity were identified based on bulk RNA sequencing, including interleukin-17 signaling and platelet activation pathways at the site of tick attachment or in peripheral blood. snRNA-seq further revealed that the Hippo signaling, cell adhesion, and axon guidance pathways were involved in the response to an I. scapularis bite in humans. Features of the host response in these individuals also overlapped with that of laboratory guinea pigs exposed to I. scapularis and which acquired resistance to ticks. These findings offer novel insights for the development of new biomarkers for I. scapularis exposure and anti-tick vaccines for human use.


Asunto(s)
Ixodes , Mordeduras de Garrapatas , Humanos , Animales , Cobayas , Ixodes/genética , Secuencia de Bases , Conducta Alimentaria/fisiología , ARN Nuclear Pequeño
13.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577703

RESUMEN

Gene-edited mosquitoes lacking a g amma-interferon-inducible lysosomal thiol reductase-like protein, namely ( mosGILT null ) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILT null A. gambiae was therefore compared to wild type (WT) by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILT null A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg , an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILT null mosquitoes. These results provide the crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.

14.
bioRxiv ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37577710

RESUMEN

Guinea pigs repeatedly exposed to Ixodes scapularis develop acquired resistance to the ticks (ATR). The molecular mechanisms of ATR have not been fully elucidated, and partially involve immune responses to proteins in tick saliva. In this study, we examined the metabolome of sera of guinea pigs during the development of ATR. Induction of components of the tyrosine metabolic pathway, including hydroxyphenyllactic acid (HPLA), were associated with ATR. We therefore administered HPLA to mice, an animal that does not develop ATR, and exposed the animals to I. scapularis . We also administered nitisinone, a known inhibitor of tyrosine degradation, to another group of mice. The mortality of I. scapularis that fed on mice given HPLA or nitisinone was 26% and 72% respectively, compared with 2% mortality among ticks that fed on control animals. These data indicate that metabolic changes that occur after tick bites contribute to ATR.

15.
Vaccine ; 41(34): 4996-5002, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37407406

RESUMEN

Acquired resistance to ticks can develop when animals are repeatedly exposed to ticks. Recently, acquired resistance to Ixodes scapularis was induced in guinea pigs immunized with an mRNA-lipid nanoparticle vaccine (19ISP) encoding 19 I. scapularis proteins. Here, we evaluated specific mRNAs present in 19ISP to identify critical components associated with resistance to ticks. A lipid nanoparticle containing 12 mRNAs which included all the targets within 19ISP that elicited strong humoral responses in guinea pigs, was sufficient to induce robust resistance to ticks. Lipid nanoparticles containing fewer mRNAs or a single mRNA were not able to generate strong resistance to ticks. All lipid nanoparticles containing salp14 mRNA, however, were associated with increased redness at the tick bite site - which is the first manifestation of acquired resistance to ticks. This study demonstrates that more than one I. scapularis target within 19ISP is required for resistance to ticks, and that additional targets may also play a role in this process.


Asunto(s)
Ixodes , Enfermedad de Lyme , Animales , Cobayas , ARN Mensajero , Ixodes/genética
16.
Anal Methods ; 15(31): 3854-3862, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37496451

RESUMEN

The quantitative determination of the soluble solid content (SSC) of potatoes using NIR spectroscopy is useful for predicting the internal and external quality of potato products, especially fried products. In this study, the effect of peel on the partial least squares regression (PLSR) quantitative prediction of potato SSC was investigated by transmission and reflection. The results show that the variable sorting for normalization (VSN) pre-processing method improved model accuracy. Additive multiplicative scattering effects and intensity drift interference of the peels were reduced. The model accuracy reached a correlation coefficient of prediction (RP) of 0.85. The selection algorithm using variable combination population analysis and iterative retention of information variables (VCPA-IRIV) demonstrated that peel increases unnecessary information. When the effect of irrelevant variables was reduced, the results reached RP = 0.88 and the root mean square error of prediction (RMSEP) = 0.25 in the transmission mode was close to that of the full-wavelength peeled PLSR model (RP = 0.89 and RMSEP = 0.25). This indicates that the use of the combined algorithm (VSN-VCPA-IRIV) reduces the effect of the peel and enables samples with a peel to still be predicted accurately in the full-wavelength model. It also improves detection efficiency through the extraction of the necessary variables and optimizes the stability and accuracy of the model.

17.
Cell Biol Int ; 47(5): 920-928, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36651326

RESUMEN

Receptor of activated nuclear factor kappa B ligand (RANKL) is regulated by prolactin in the mammary gland. However, the intrinsic molecular mechanism is not well understood. Herein, mammary epithelial cells (MECs) of dairy cows were isolated to characterize the molecular mechanism of prolactin in vitro. We demonstrated that prolactin stimulation increased the expression of RANKL in MECs. Moreover, the expression of RANKL induced by prolactin was inhibited by the prolactin receptor or signal transducer and activator of transcription 5A (STAT5a) knockdown. Furthermore, prolactin markedly increased RANKL-Luciferase reporter activity in MECs. We identified a putative gamma-interferon activated site (GAS) in the region between residues -883 to -239 bp of the RANKL promoter. Subsequently, we found that the mutated GAS sequence failed to respond to prolactin stimulation. In addition, STAT5a knockdown markedly decreased prolactin-stimulated RANKL promoter activity. Western blot results revealed that RANKL overexpression markedly decreased the STAT5a phosphorylation level in MECs. These findings indicate that prolactin could regulate RANKL promoter activity via STAT5a, contributing to increased RANKL expression in MECs. RANKL may have a negative regulatory effect on STAT5a activity.


Asunto(s)
FN-kappa B , Prolactina , Femenino , Animales , Bovinos , Prolactina/metabolismo , Prolactina/farmacología , FN-kappa B/metabolismo , Factor de Transcripción STAT5/metabolismo , Ligandos , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo
18.
Food Chem ; 405(Pt A): 134856, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36368098

RESUMEN

pH-responsive carboxymethyl chitosan (CC)/sodium alginate (SA)/carvacrol (CA) hydrogels were prepared using CC and SA as wall materials. The formation of hydrogels is attributed to electrostatic interactions and hydrogen bonding. The thermostability of the hydrogels was improved with increasing CC content. The swelling degree of the hydrogels increased with increasing pH of the buffer solution. The mechanism of CA release was mainly controlled by Fickian diffusion. Notably, the release rate of CA was positively correlated with temperature and environmental pH, thus the on-demand release of CA can be achieved through pH stimulation. The hydrogels showed good storage stability via determination of antioxidant and antibacterial activities. Furthermore, the C4S1-CA hydrogels (CC/SA blends with dry mass ratios of 4:1, w/w) have good biocompatibility and biosafety. The CC/SA/CA hydrogels provide a unique route for environmentally-responsive preservatives and present new avenues for precise release and intelligent preservation.


Asunto(s)
Quitosano , Hidrogeles , Hidrogeles/química , Quitosano/química , Cinética , Concentración de Iones de Hidrógeno , Alginatos/química , Portadores de Fármacos/química
19.
Cell Rep ; 41(8): 111673, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417869

RESUMEN

In North America, the Lyme disease agent, Borrelia burgdorferi, is commonly transmitted by the black-legged tick, Ixodes scapularis. Tick saliva facilitates blood feeding and enhances pathogen survival and transmission. Here, we demonstrate that I. scapularis complement C1q-like protein 3 (IsC1ql3), a tick salivary protein, directly interacts with B. burgdorferi and is important during the initial stage of spirochetal infection of mice. Mice fed upon by B. burgdorferi-infected IsC1ql3-silenced ticks, or IsC1ql3-immunized mice fed upon by B. burgdorferi-infected ticks, have a lower spirochete burden during the early phase of infection compared with control animals. Mechanically, IsC1ql3 interacts with the globular C1q receptor present on the surface of CD4+ and CD8+ T cells, resulting in decreased production of interferon γ. IsC1ql3 is a C1q-domain-containing protein identified in arthropod vectors and has an important role in B. burgdorferi infectivity as the spirochete transitions from the tick to vertebrate host.


Asunto(s)
Ixodes , Enfermedad de Lyme , Ratones , Animales , Interferón gamma , Linfocitos T CD8-positivos , Complemento C1q
20.
Insect Biochem Mol Biol ; 148: 103815, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35932972

RESUMEN

The mosquito Aedes aegypti is a major vector for dengue, Zika, yellow fever, and chikungunya (CHIKV) viruses, which cause significant morbidity and mortality among human populations in the tropical regions of the world. Following ingestion of a viremic bloodmeal from a vertebrate host, an arbovirus needs to productively infect the midgut epithelium of the mosquito. De novo synthesized virions then exit the midgut by traversing the surrounding basal lamina (BL) in order to disseminate to secondary tissues and infect those. Once the salivary glands are infected, the virus is transmitted to a vertebrate host along with saliva released during probing of the mosquito. Midgut tissue distention due to bloodmeal ingestion leads to remodeling of the midgut structure and facilitates virus dissemination from the organ. Previously, we described the matrix-metalloproteinases (MMP) of Ae. aegypti as zinc ion dependent endopeptidases (Metzincins) and showed MMP activity during midgut BL rearrangement as a consequence of bloodmeal ingestion and subsequent digestion thereby affecting arbovirus dissemination from the midgut. Here we investigate the ADAM/ADAMTS of Ae. aegypti, which form another major group of multi-domain proteinases within the Metzincin superfamily and are active during extra-cellular matrix (ECM) remodeling. Seven different ADAM and five ADAMTS were identified in Ae. aegypti. The functional protein domain structures of the identified mosquito ADAM resembled those of human ADAM10, ADAM12, and ADAM17, while two of the five mosquito ADAMTS had human orthologs. Expression profiling of Ae. aegypti ADAM/ADAMTS in immature forms, whole body-females, midguts, and ovarian tissues showed transcriptional activity of the proteinases during metamorphosis, bloodmeal ingestion/digestion, and female reproduction. Custom-made antibodies to ADAM10a and ADAM12c showed that both were strongly expressed in midgut and ovarian tissues. Furthermore, transient silencing of ADAM12c significantly reduced the carcass infection rate with CHIKV at 24 h post-infection, while silencing of ADAM12a significantly increased viral titers in secondary tissues at the same time point. Our results indicate a functional specificity for several ADAM/ADAMTS in those selected mosquito tissues.


Asunto(s)
Aedes , Virus Chikungunya , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Animales , Endopeptidasas , Femenino , Tracto Gastrointestinal , Humanos , Metaloproteinasas de la Matriz , Mosquitos Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...