Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 15100, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068257

RESUMEN

We report for the first time the use of experimental electron density (ED) as training data for the generation of drug-like three-dimensional molecules based on the structure of a target protein pocket. Similar to a structural biologist building molecules based on their ED, our model functions with two main components: a generative adversarial network (GAN) to generate the ligand ED in the input pocket and an ED interpretation module for molecule generation. The model was tested on three targets: a kinase (hematopoietic progenitor kinase 1), protease (SARS-CoV-2 main protease), and nuclear receptor (vitamin D receptor), and evaluated with a reference dataset composed of over 8000 compounds that have their activities reported in the literature. The evaluation considered the chemical validity, chemical space distribution-based diversity, and similarity with reference active compounds concerning the molecular structure and pocket-binding mode. Our model can generate molecules with similar structures to classical active compounds and novel compounds sharing similar binding modes with active compounds, making it a promising tool for library generation supporting high-throughput virtual screening. The ligand ED generated can also be used to support fragment-based drug design. Our model is available as an online service to academic users via https://edmg.stonewise.cn/#/create .


Asunto(s)
COVID-19 , Electrones , Humanos , Ligandos , Modelos Moleculares , SARS-CoV-2
2.
Mol Ther Oncolytics ; 18: 396-408, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32913889

RESUMEN

Relapse of cancer is associated with multidirectional differentiation and unrestricted proliferative replication potential of cancer stem cells. Herein, we propose the plastic differentiation strategy for irreversible differentiation of cancer stem cells; further, salinomycin and its newly constructed functional liposomes are used to implement this strategy. Whole gene, cancer stem cell-related RNA, and protein expression analyses reveal that salinomycin induces the cancer stem cells into normal cells, dormant cells, and mature cancer cells. Besides, the results indicate that the gatekeeper is related to the inhibition of the protein kinase C (PKC) α signaling pathway. The differentiated normal or dormant cells are incorporated into normal tissue, whereas the rest are killed by chemotherapy. The findings would offer the evidence for plastic differentiation of cancer stem cells and propose a novel strategy for cancer therapy.

3.
Asian J Pharm Sci ; 15(4): 461-471, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32952669

RESUMEN

Natural exosomes can express specific proteins and carbohydrate molecules on the surface and hence have demonstrated the great potentials for gene therapy of cancer. However, the use of natural exosomes is restricted by their low transfection efficiency. Here, we report a novel targeting tLyp-1 exosome by gene recombinant engineering for delivery of siRNA to cancer and cancer stem cells. To reach such a purpose, the engineered tLyp-1-lamp2b plasmids were constructed and amplified in Escherichia coli. The tLyp-1-lamp2b plasmids were further used to transfect HEK293T tool cells and the targeting tLyp-1 exosomes were isolated from secretion of the transfected HEK293T cells. Afterwards, the artificially synthesized siRNA was encapsulated into targeting tLyp-1 exosomes by electroporation technology. Finally, the targeting siRNA tLyp-1 exosomes were used to transfect cancer or cancer stem cells. Results showed that the engineered targeting tLyp-1 exosomes had a nanosized structure (approximately 100 nm) and high transfection efficiency into lung cancer and cancer stem cells. The function verifications demonstrated that the targeting siRNA tLyp-1 exosomes were able to knock-down the target gene of cancer cells and to reduce the stemness of cancer stem cells. In conclusion, the targeting tLyp-1 exosomes are successfully engineered, and can be used for gene therapy with a high transfection efficiency. Therefore, the engineered targeting tLyp-1 exosomes offer a promising gene delivery platform for future cancer therapy.

4.
Int J Nanomedicine ; 14: 3645-3667, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31190817

RESUMEN

Background: Neo-adjuvant chemotherapy is an effective strategy for improving treatment of breast cancers. However, the efficacy of this treatment strategy is limited for treatment of triple negative breast cancer (TNBC). Gene therapy may be a more effective strategy for improving the prognosis of TNBC. Methods: A novel 25 nucleotide sense strand of miRNA was designed to treat TNBC by silencing the Slug gene, and encapsulated into DSPE-PEG2000-tLyp-1 peptide-modified functional liposomes. The efficacy of miRNA liposomes was evaluated on invasive TNBC cells and TNBC cancer-bearing nude mice. Furthermore, functional vinorelbine liposomes were constructed to investigate the anticancer effects of combined treatment. Results: The functional miRNA liposomes had a round shape and were nanosized (120 nm). Functional miRNA liposomes were effectively captured by TNBC cells in vitro and were target to mitochondria. Treatment with functional liposomes silenced the expression of Slug and Slug protein, inhibited the TGF-ß1/Smad pathway, and inhibited invasiveness and growth of TNBC cells. In TNBC cancer-bearing mice, functional miRNA liposomes exerted a stronger anticancer effect than functional vinorelbine liposomes, and combination therapy with these two formulations resulted in nearly complete inhibition of tumor growth. Preliminary safety evaluations indicated that the functional miRNA liposomes did not affect body weight or cause damage to any major organs. Furthermore, the functional liposomes significantly increased the half-life of the drug in the blood of cancer-bearing nude mice, and increased drug accumulation in breast cancer tissues. Conclusion: In this study, we constructed novel functional miRNA liposomes. These liposomes silenced Slug expression and inhibited the TGF-ß1/Smad pathway in TNBC cells, and enhanced anticancer efficacy in mice using combined chemotherapy. Hence, the present study demonstrated a promising strategy for gene therapy of invasive breast cancer.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Nanopartículas/química , Tamaño de la Partícula , Factores de Transcripción de la Familia Snail/genética , Neoplasias de la Mama Triple Negativas/terapia , Animales , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Femenino , Humanos , Liposomas , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Invasividad Neoplásica , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias de la Mama Triple Negativas/patología
5.
Int J Nanomedicine ; 13: 8119-8135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555230

RESUMEN

BACKGROUND: The existing chemo/radiotherapy fail to eliminate cancer cells due to the restriction of either drug resistance or radio tolerance. The predicament urges researchers to continuously explore alternative strategy for achieving a potent curative effect. METHODS: Functional chlorin gold nanorods (Ce6-AuNR@SiO2-d-CPP) were fabricated aiming at treating breast cancer by photothermal/photodynamic therapy (PTT/PDT). The nanostructure was developed by synthesizing Au nanorods as the photothermal conversion material, and by coating the pegylated mesoporous SiO2 as the shell for entrapping photosensitizer Ce6 and for linking the D-type cell penetrating peptide (d-CPP). The function of Ce6-AuNR@SiO2-d-CPP was verified on human breast cancer MCF-7 cells and MCF-7 cells xenografts in nude mice. RESULTS: Under combinational treatment of PTT and PDT, Ce6-AuNR@SiO2-d-CPP demonstrated a strong cytotoxicity and apoptosis inducing effects in breast cancer cells in vitro, and a robust treatment efficacy in breast cancer-bearing nude mice. The uptake mechanism involved the energy-consuming caveolin-mediated endocytosis, and Ce6-AuNR@SiO2-d-CPP in PTT/PDT mode could induce apoptosis by multiple pathways in breast cancer cells. CONCLUSION: Ce6-AuNR@SiO2-d-CPP demonstrated a robust efficacy in the treatment of breast cancer by photothermal/photodynamic therapy. Therefore, the present study could offer a new promising strategy to treat the refractory breast cancer.


Asunto(s)
Neoplasias de la Mama/terapia , Oro/química , Hipertermia Inducida , Nanotubos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/administración & dosificación , Porfirinas/administración & dosificación , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Terapia Combinada , Femenino , Humanos , Ratones , Ratones Desnudos , Fármacos Fotosensibilizantes/química , Fototerapia , Porfirinas/química , Dióxido de Silicio/química , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Int J Nanomedicine ; 13: 719-731, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29440897

RESUMEN

AIM: Oral chemotherapy using anticancer drugs would improve the clinical practice and the life quality of patients. The aim of the present study was to develop paclitaxel hybrid nanomicelles for oral administration to treat resistant breast cancer. METHODS: Evaluations were performed on human breast cancer MCF-7 cells, drug-resistant breast cancer MCF-7/Adr cells, and in MCF-7/Adr-xenografted BALB/c nude mice. The nanomicelles were composed of the polymer soluplus, d-α-tocopheryl polyethyleneglycol 1000 succinate (TPGS1000), and dequalinium (DQA). The constructed paclitaxel hybrid nanomicelles were ~65 nm in size. RESULTS: The nanomicelles improved cellular uptake and anticancer efficacy in the resistant breast cancer cells and induced mitochondria-mediated apoptosis. The mechanism of the apoptosis-inducing effect was related to the co-localization of the nanomicelles with mitochondria; the activation of pro-apoptotic protein Bax, cytochrome C, and apoptotic enzymes caspase 9 and 3; and the inhibition of anti-apoptotic proteins Bcl-2 and Mcl-1. Oral administration of paclitaxel hybrid nanomicelles had the same anticancer efficacy as the intravenous injection of taxol in resistant breast cancer-bearing mice. The oral suitability of this formulation was associated with the nanostructure and the actions of TPGS1000 and DQA. CONCLUSION: The fabricated paclitaxel hybrid nanomicelles could provide a promising oral formulation to treat drug-resistant breast cancer.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Paclitaxel/administración & dosificación , Administración Oral , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Citocromos c/metabolismo , Decualinio/química , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Micelas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Paclitaxel/química , Polietilenglicoles , Polivinilos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...