Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 120: 155033, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37647672

RESUMEN

BACKGROUND: Hypertension is a serious global public health issue. Blood pressure (BP) is still not effectively controlled in about 20 - 30% of hypertensive patients. Therefore, it is imperative to develop new treatments for hypertension. Veratrum alkaloids were once used for the clinical treatment of hypertension, the mechanism of which is still unclear. It was gradually phased out due to adverse reactions. PURPOSE: This study aimed to investigate the short-term and long-term hypotensive profiles of different components of Veratrum alkaloids in spontaneously hypertensive rats (SHRs) to unveil their mechanisms of action. RESULTS: Total Veratrum alkaloid (V), component A (A), and veratramine (M) quickly decreased BP within 30 min of treatment, reduced renal and cardiovascular damage, and improved relevant biochemical indicators (nitric oxide [NO], endothelin-1 [ET-1], angiotensin II [Ang II)], noradrenaline [NE], etc) in SHRs to delay stroke occurrence. Thereinto, A exhibited excellent protective effects in cardiovascular disease. The metabolomic profiles of SHRs treated with V, A, and M were significantly different from those of SHRs treated with vehicle. Thirteen metabolites were identified as potential pharmacodynamic biomarkers. Through Kyoto Encyclopedia of Genes and Genomes analysis, V, A, and M-induced hypotension was mainly related to alterations in nicotinate and nicotinamide metabolism, GABAergic synapses, linoleic acid metabolism, ketone body synthesis and degradation, arginine and proline metabolism, and urea cycle, of which nicotinate and nicotinamide metabolism was the key metabolic pathway to relieve hypertension. CONCLUSION: This work shows that A is an effective and promising antihypertensive agent for hypertension treatment to reduce BP and hypertensive target organ damage, which is mainly mediated through modulating nicotinate and nicotinamide metabolism, RAS, and NO-ET homeostasis.


Asunto(s)
Hipertensión , Niacina , Humanos , Animales , Ratas , Antihipertensivos/farmacología , Alcaloides de Veratrum , Hipertensión/tratamiento farmacológico , Análisis de Datos , Niacinamida
2.
Food Sci Nutr ; 10(8): 2794-2803, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35959248

RESUMEN

Ethanol is a principal ingredient of alcoholic beverages with potential neurotoxicity and genotoxicity, and the ethanol-associated oxidative DNA damage in the central nervous system is well documented. Natural product may offer new options to protect the brain against ethanol-induced neurotoxicity. The male flower of Eucommia ulmoides (EUF) Oliver has been extensively utilized as the tea, the healthy hot drink on the market. In this study, 19 constituents in the effective fraction of EUF were identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In the single-cell gel electrophoresis assay, EUF was observed to ameliorate DNA damage in mouse cerebellum and cerebral cortex caused by acute ethanol administration, which was further confirmed by the morphological observation. The protective effects of EUF were associated with increasing total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) activities, and a decrease in nitric oxide (NO), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and kelch-like ECH-associated protein-1 (Keap1) levels. Molecular docking results demonstrated that compounds 4, 7, 9, and 16 from EUF have a strong affinity to the Keap1 Kelch domain to hinder the interaction of nuclear factor-erythroid 2-related factor 2 (Nrf2) with Keap1. These findings suggest that EUF is a potent inhibitor of ethanol-induced brain injury possibly via the inhibition of oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA