Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 20(3): 1143-1156, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38300885

RESUMEN

We apply the Lang-Firsov (LF) transformation to electron-boson coupled Hamiltonians and variationally optimize the transformation parameters and molecular orbital coefficients to determine the ground state. Møller-Plesset (MP-n, with n = 2 and 4) perturbation theory is then applied on top of the optimized LF mean-field state to improve the description of electron-electron and electron-boson correlations. The method (LF-MP) is applied to several electron-boson coupled systems, including the Hubbard-Holstein model, diatomic molecule dissociation (H2, HF), and the modification of proton transfer reactions (malonaldehyde and aminopropenal) via the formation of polaritons in an optical cavity. We show that with a correction for the electron-electron correlation, the method gives quantitatively accurate energies comparable to that by exact diagonalization or coupled-cluster theory. The effects of multiple photon modes, spin polarization, and the comparison to the coherent state MP theory are also discussed.

2.
J Chem Phys ; 159(23)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38108484

RESUMEN

block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.

3.
J Phys Chem A ; 127(47): 9974-9984, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37967028

RESUMEN

Characterizing the electronic structure of the iron-sulfur clusters in nitrogenase is necessary to understand their role in the nitrogen fixation process. One challenging task is to determine the protonation state of the intermediates in the nitrogen fixing cycle. Here, we use a dimeric iron-sulfur model to study relative energies of protonation at C, S, or Fe. Using a composite method based on coupled cluster and density matrix renormalization group energetics, we converge the relative energies of four protonated configurations with respect to basis set and correlation level. We find that accurate relative energies require large basis sets as well as a proper treatment of multireference and relativistic effects. We have also tested ten density functional approximations for these systems. Most of them give large errors in their relative energies. The best performing functional in this system is B3LYP, which gives mean absolute and maximum deviations of only 10 and 13 kJ/mol with respect to our correlated wave function estimates, respectively, comparable to the uncertainty in our correlated estimates. Our work provides benchmark results for the calibration of new approximate electronic structure methods and density functionals for these problems.

4.
Nat Commun ; 14(1): 1952, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029105

RESUMEN

Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.

5.
Science ; 377(6611): 1192-1198, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074839

RESUMEN

The quantitative description of correlated electron materials remains a modern computational challenge. We demonstrate a numerical strategy to simulate correlated materials at the fully ab initio level beyond the solution of effective low-energy models and apply it to gain a detailed microscopic understanding across a family of cuprate superconducting materials in their parent undoped states. We uncover microscopic trends in the electron correlations and reveal the link between the material composition and magnetic energy scales through a many-body picture of excitation processes involving the buffer layers. Our work illustrates a path toward a quantitative and reliable understanding of more complex states of correlated materials at the ab initio many-body level.

6.
J Chem Theory Comput ; 18(2): 851-864, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35084855

RESUMEN

Density matrix embedding theory (DMET) formally requires the matching of density matrix blocks obtained from high-level and low-level theories, but this is sometimes not achievable in practical calculations. In such a case, the global band gap of the low-level theory vanishes, and this can require additional numerical considerations. We find that both the violation of the exact matching condition and the vanishing low-level gap are related to the assumption that the high-level density matrix blocks are noninteracting pure-state v-representable (NI-PS-V), which assumes that the low-level density matrix is constructed following the Aufbau principle. To relax the NI-PS-V condition, we develop an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

7.
J Chem Phys ; 153(2): 024109, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668948

RESUMEN

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and quantum information science.

8.
Nat Mater ; 19(5): 528-533, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32094495

RESUMEN

Developing a precise and reproducible bandgap tuning method that enables tailored design of materials is of crucial importance for optoelectronic devices. Towards this end, we report a sphere diameter engineering (SDE) technique to manipulate the bandgap of two-dimensional (2D) materials. A one-to-one correspondence with an ideal linear working curve is established between the bandgap of MoS2 and the sphere diameter in a continuous range as large as 360 meV. Fully uniform bandgap tuning of all the as-grown MoS2 crystals is realized due to the isotropic characteristic of the sphere. More intriguingly, both a decrease and an increase of the bandgap can be achieved by constructing a positive or negative curvature. By fusing individual spheres in the melted state, post-synthesis bandgap adjustment of the supported 2D materials can be realized. This SDE technique, showing good precision, uniformity and reproducibility with high efficiency, may further accelerate the potential applications of 2D materials.

9.
J Chem Theory Comput ; 16(1): 141-153, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31815457

RESUMEN

We present an efficient ab initio dynamical mean-field theory (DMFT) implementation for quantitative simulations in solids. Our DMFT scheme employs ab initio Hamiltonians defined for impurities comprising the full unit cell or a supercell of atoms and for realistic quantum chemical basis sets. We avoid double counting errors by using Hartree-Fock as the low-level theory. Intrinsic and projected atomic orbitals (IAO + PAO) are chosen as the local embedding basis, facilitating numerical bath truncation. Using an efficient integral transformation and coupled-cluster Green's function impurity solvers, we are able to handle embedded impurity problems with several hundred orbitals. We apply our ab initio DMFT approach to study a hexagonal boron nitride monolayer, crystalline silicon, and nickel oxide in the antiferromagnetic phase, with up to 104 and 78 impurity orbitals in the spin-restricted and unrestricted cluster DMFT calculations and over 100 bath orbitals. We show that our scheme produces accurate spectral functions compared to both benchmark periodic coupled-cluster computations and experimental spectra.

10.
J Chem Theory Comput ; 16(1): 119-129, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31815466

RESUMEN

We describe an efficient quantum embedding framework for realistic ab initio density matrix embedding theory (DMET) calculations in solids. We discuss in detail the choice of orbitals and mapping to a lattice, treatment of the virtual space and bath truncation, and the lattice-to-embedded integral transformation. We apply DMET in this ab initio framework to a hexagonal boron nitride monolayer, crystalline silicon, and nickel monoxide in the antiferromagnetic phase, using large embedded clusters with up to 300 embedding orbitals. We demonstrate our formulation of ab initio DMET in the computation of ground-state properties such as the total energy, equation of state, magnetic moment, and correlation functions.

11.
Arch Anim Nutr ; 72(4): 275-289, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29972320

RESUMEN

Two experiments were conducted to estimate the metabolisable energy (ME) and net energy (NE) of rice straw and wheat straw for beef cattle. In each experiment, 16 Wandong bulls (Chinese indigenous yellow cattle) were assigned to 4 dietary treatments in a completely randomised design. Four dietary treatments included one corn silage-concentrate basal diet and three test diets in which the basal diet was partly substituted by rice straw (Exp. 1) or wheat straw (Exp. 2) at 100, 300 and 600 g/kg. Total collection of faeces and urine was conducted for 5 consecutive days after a 2-week adaption period, followed by a 4-d period where gas exchange measurements were measured by an open-circuit respiratory cage. Linear regression equations of rice straw- or wheat straw-associated ME and NE contribution in test diets against rice straw or wheat straw substitution amount were developed to predict the ME and NE values of rice straw and wheat straw. These regression equations resulted in ME and NE values (dry matter basis) of 6.76 and 3.42 MJ/kg for rice straw and 6.43 and 3.28 MJ/kg for wheat straw, respectively. The NE and ME requirement for maintenance of Wandong cattle fed a straw-based diet were 357 and 562 kJ·kg-0.75·d-1, respectively. The regression-derived ME and NE have lower standard errors and coefficients of variation than those estimated by any single substitution ratio. Our study found that the regression method based on multiple point substitution is more reliable than the substitution method for energy evaluation of feedstuffs for beef cattle.


Asunto(s)
Bovinos/fisiología , Ingestión de Energía , Metabolismo Energético , Oryza/química , Ensilaje/análisis , Triticum/química , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Calorimetría Indirecta/veterinaria , Dieta/veterinaria , Masculino , Distribución Aleatoria
12.
J Phys Chem Lett ; 9(9): 2338-2345, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29669414

RESUMEN

First-principles prediction of electronic band structures of materials is crucial for rational material design, especially in solar-energy-related materials science. Hybrid functionals that mix the Hartree-Fock exact exchange with local or semilocal density functional approximations have proven to be accurate and efficient alternatives to more sophisticated Green's function-based many-body perturbation theory. The optimal fraction of the exact exchange, previously often treated as an empirical parameter, is closely related to the screening strength of the system under study. From a physical point of view, the screening has two extreme forms: the dielectric screening [1/ϵM] that is dominant in wide-gap materials and the Thomas-Fermi metallic screening [exp(-ζ r) ] that is important in narrow-gap semiconductors. In this work, we have systematically investigated the performances of a nonempirical doubly screened hybrid (DSH) functional that considers both screening mechanisms and found that it excels all other existing hybrid functionals and describes the band gaps of narrow-, medium-, and wide-gap insulating systems with comparably good performances.

13.
J Phys Chem Lett ; 8(6): 1224-1228, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28247758

RESUMEN

Two-dimensional (2D) phases of boron are rare and unique. Here we report a new 2D all-boron phase (named the π phase) that can be grown on a W(110) surface. The π phase, composed of four-membered rings and six-membered rings filled with an additional B atom, is predicted to be the most stable on this support. It is characterized by an outstanding stability upon exfoliation off of the W surface, and unusual electronic properties. The chemical bonding analysis reveals the metallic nature of this material, which can be attributed to the multicentered π-bonds. Importantly, the calculated conductivity tensor is anisotropic, showing larger conductivity in the direction of the sheet that is in-line with the conjugated π-bonds, and diminished in the direction where the π-subsystems are connected by single σ-bonds. The π-phase can be viewed as an ultrastable web of aligned conducting boron wires, possibly of interest to applications in electronic devices.

14.
Phys Chem Chem Phys ; 18(43): 29914-29922, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27761539

RESUMEN

The relative stability of TiO2 in the rutile and anatase structure is wrongly described by density functional theory in various local, semilocal, or even hybrid functional approximations. In this work, we have found that by considering high-order correlations in the adiabatic connection fluctuation-dissipation theory with the random phase approximation (ACFDT-RPA), rutile is correctly predicted to be more stable than anatase, which can be physically attributed to different characters in the electronic band structure of rutile and anatase, including, in particular, that rutile has a smaller band gap than anatase. We further consider the zero-point energy and finite-temperature effects based on the harmonic approximation, and we found that the inclusion of the zero-point energy correction can further increase the relative stability of rutile, and leads to a better quantitative agreement with available experimental measurements. Our study indicates the importance of considering high-order dynamical correlation effects to correctly predict the relative phase stability of polymorphic materials, especially for those systems in which the less stable phase as predicted by conventional local, semilocal or even hybrid density functional approximations has a smaller band gap than the more stable one.

15.
Bioorg Med Chem Lett ; 25(8): 1799-1803, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25736994

RESUMEN

The worldwide threat from tuberculosis (TB) has resulted in great demand for new drugs, particularly those that can treat multidrug-resistant TB. We synthesized novel pleuromutilin derivatives with N-benzylamine side chain substituted at the C14 position and evaluated their activity in vitro against a virulent strain of Mycobacterium tuberculosis (H37Rv). The primary assay results showed that five compounds inhibited the H37Rv at 20µM, with a MIC of one of the analogues as low as 7.2µM.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/química , Antituberculosos/farmacología , Diterpenos/síntesis química , Diterpenos/química , Diterpenos/farmacología , Diseño de Fármacos , Farmacorresistencia Microbiana , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos Policíclicos , Relación Estructura-Actividad , Pleuromutilinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...