Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hear Res ; 432: 108742, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37004270

RESUMEN

The Lombard effect, referring to an involuntary rise in vocal intensity, is a widespread vertebrate mechanism that aims to maintain signal efficiency in response to ambient noise. Previous studies showed that the Lombard effect could be sufficiently implemented at subcortical levels and operated by continuously monitoring background noise, requiring some subcortical auditory sensitive neurons to have continuous responses to background noise. However, such neurons have not been well characterized. The inferior colliculus (IC) is a major auditory integration center under the auditory cortex and provides projections to the putative vocal pattern generator in the brainstem. Thus, it is reasonable to speculate that the IC is a likely auditory nucleus candidate having background noise responding neurons (BNR neurons). In the present study, we isolated 183 sound-sensitive IC neurons in a constant frequency-frequency modulation bat, Hipposideros pratti, and found that around 19% of these IC neurons are BNR neurons when stimulated with 70 dB SPL background white noise. Their firing rates in response to noise increased with increasing noise intensity and could be suppressed by sound stimulation. Furthermore, compared to neurons with similar best frequencies, the BNR neurons had smaller Q10-dB values and lower noise-induced minimal threshold change, indicating that BNR neurons received fewer inhibitory inputs. These results suggested that the BNR neurons are ideal candidates for collecting information about background noise. We proposed that the BNR neurons synapsed with neurons in vocal-pattern-generating networks in the brainstem and initiated the Lombard effect by a feed-forward loop.


Asunto(s)
Quirópteros , Ecolocación , Colículos Inferiores , Animales , Colículos Inferiores/fisiología , Quirópteros/fisiología , Percepción Auditiva/fisiología , Estimulación Acústica , Ecolocación/fisiología , Neuronas/fisiología
2.
Sheng Li Xue Bao ; 74(3): 489-494, 2022 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-35770646

RESUMEN

High level noise can damage cochlear hair cells, auditory nerve and synaptic connections between cochlear hair cells and auditory nerve, resulting in noise-induced hearing loss (NIHL). Recent studies have shown that animal cochleae have circadian rhythm, which makes them different in sensitivity to noise throughout the day. Cochlear circadian rhythm has a certain relationship with brain-derived neurotrophic factor and glucocorticoids, which affects the degree of hearing loss after exposure to noise. In this review, we summarize the research progress of the regulation of cochlear sensitivity to noise by circadian rhythm and prospect the future research direction.


Asunto(s)
Ritmo Circadiano , Pérdida Auditiva Provocada por Ruido , Animales , Umbral Auditivo , Cóclea , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Células Ciliadas Auditivas , Ruido/efectos adversos
3.
Front Behav Neurosci ; 15: 657155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113242

RESUMEN

Acoustic communication signals are inevitably challenged by ambient noise. In response to noise, many animals adjust their calls to maintain signal detectability. However, the mechanisms by which the auditory system adapts to the adjusted pulses are unclear. Our previous study revealed that the echolocating bat, Hipposideros pratti, increased its pulse intensity in the presence of background white noise. In vivo single-neuron recording demonstrated that the auditory midbrain neurons tuned to the second harmonic (H2 neurons) increased their minimal threshold (MT) to a similar degree as the increment of pulse intensity in the presence of the background noise. Furthermore, the H2 neurons exhibited consistent spike rates at their best amplitudes and sharper intensity tuning with background white noise compared with silent conditions. The previous data indicated that sound intensity analysis by auditory midbrain neurons was adapted to the increased pulse intensity in the same noise condition. This study further examined the echolocation pulse frequency and frequency analysis of auditory midbrain neurons with noise conditions. The data revealed that H. pratti did not shift the resting frequency in the presence of background noise. The auditory midbrain neuronal frequency analysis highly linked to processing the resting frequency with the presence of noise by presenting the constant best frequency (BF), frequency sensitivity, and frequency selectivity. Thus, our results suggested that auditory midbrain neuronal responses in background white noise are adapted to process echolocation pulses in the noise conditions.

4.
Hear Res ; 400: 108142, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310564

RESUMEN

Although acoustic communication is inevitably influenced by noise, behaviorally relevant sounds are perceived reliably. The noise-tolerant and -invariant responses of auditory neurons are thought to be the underlying mechanism. So, it is reasonable to speculate that neurons with best frequency tuned to behaviorally relevant sounds will play important role in noise-tolerant perception. Echolocating bats live in groups and emit multiple harmonic signals and analyze the returning echoes to extract information about the target features, making them prone to deal with noise in their natural habitat. The echolocation signal of Hipposideros pratti usually contains 3-4 harmonics (H1H4), the second harmonic has the highest amplitude and is thought to play an essential role during echolocation behavior. Therefore, it is reasonable to propose that neurons tuned to the H2, named the H2 neurons, can be more noise-tolerant to background noise. Taking advantage of bat's stereotypical echolocation signal and single-cell recording, our present study showed that the minimal threshold increases (12.2 dB) of H2 neurons in the auditory midbrain were comparable to increase in bat's call intensity (14.2 dB) observed in 70 dB SPL white noise condition, indicating that the H2 neurons could work as background noise monitor. The H2 neurons had higher minimal thresholds and sharper frequency tuning, which enabled them to be more tolerant to background noise. Furthermore, the H2 neurons had consistent best amplitude spikes and sharper intensity tuning in background white noise condition than in silence. Taken together, these results suggest that the H2 neurons might account for noise-tolerant perception of behaviorally relevant sounds.


Asunto(s)
Quirópteros , Estimulación Acústica , Animales , Percepción Auditiva , Ecolocación , Mesencéfalo , Neuronas , Microscopía de Generación del Segundo Armónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...