Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 472: 134493, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38696960

RESUMEN

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.

2.
Int J Biol Macromol ; 266(Pt 2): 131413, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582482

RESUMEN

ß-1,3-Galactanases selectively degrade ß-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-ß-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using ß-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only ß-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 ß-1,3-galactanase for the degradation of arabinogalactan.


Asunto(s)
Glicósido Hidrolasas , Paenibacillus , Paenibacillus/enzimología , Paenibacillus/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Especificidad por Sustrato , Dominios Proteicos , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Cinética , Hidrólisis , Galactanos/metabolismo , Secuencia de Aminoácidos , Temperatura
3.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445906

RESUMEN

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Asunto(s)
Hidrolasas de Éster Carboxílico , Cladosporium , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Cladosporium/genética , Cladosporium/metabolismo , Estudios Prospectivos , Biodegradación Ambiental , Poliésteres/metabolismo , Plásticos
4.
Nat Plants ; 10(4): 618-632, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409290

RESUMEN

Effector proteins secreted by plant pathogenic fungi are important artilleries against host immunity, but there is no precedent of such effectors being explored as antifungal targets. Here we demonstrate that MoErs1, a species-specific effector protein secreted by the rice blast fungus Magnaporthe oryzae, inhibits the function of rice papain-like cysteine protease OsRD21 involved in rice immunity. Disrupting MoErs1-OsRD21 interaction effectively controls rice blast. In addition, we show that FY21001, a structure-function-based designer compound, specifically binds to and inhibits MoErs1 function. FY21001 significantly and effectively controls rice blast in field tests. Our study revealed a novel concept of targeting pathogen-specific effector proteins to prevent and manage crop diseases.


Asunto(s)
Proteínas Fúngicas , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Interacciones Huésped-Patógeno , Papaína/metabolismo , Ascomicetos , Magnaporthe
5.
Environ Res ; 249: 118468, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354881

RESUMEN

Microorganisms have the potential to be applied for the degradation or depolymerization of polyurethane (PU) and other plastic waste, which have attracted global attention. The appropriate strain or enzyme that can effectively degrade PU is the key to treat PU plastic wastes by biological methods. Here, a polyester PU-degrading bacterium Bacillus sp. YXP1 was isolated and identified from a plastic landfill. Three PU substrates with increasing structure complexities, including Impranil DLN, poly (1,4-butylene adipate)-based PU (PBA-PU), and polyester PU foam, were used to evaluate the degradation capacity of Bacillus sp. YXP1. Under optimal conditions, strain YXP1 could completely degrade 0.5% Impranil DLN within 7 days. After 30 days, the weight loss of polyester PU foam by strain YXP1 was as high as 42.1%. In addition, PBA-PU was applied for degradation pathway analysis due to its clear composition and chemical structure. Five degradation intermediates of PBA-PU were identified, including 4,4'-methylenedianiline (MDA), 1,4-butanediol, adipic acid, and two MDA derivates, indicating that strain YXP1 could depolymerize PBA-PU by the hydrolysis of ester and urethane bonds. Furthermore, the extracellular enzymes produced by strain YXP1 could hydrolyze PBA-PU to generate MDA. Together, this study provides a potential bacterium for the biological treatment of PU plastic wastes and for the mining of functional enzymes.


Asunto(s)
Bacillus , Biodegradación Ambiental , Poliuretanos , Poliuretanos/química , Bacillus/metabolismo , Bacillus/aislamiento & purificación , Bacillus/genética , Poliésteres/metabolismo
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123895, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38262294

RESUMEN

Using optical density at 600 nm (OD600) to measure the microbial concentration is a popular approach due to its advantages like quick response and non-destructive. However, the OD600 measurement might be affected by the metabolic pigment, and it would become invalid when the solution dilution is insufficient. To overcome these issues, we proposed to adopt a more robust wavelength at 890 nm to quantify the attenuation of transmission light. After selecting this light source, we designed the light path and the circuit of the online monitoring device. Meanwhile, the random forest algorithm was introduced for temperature compensation and improving the stability of the device. This device was verified by monitoring the microbial concentration of four strains (Yeast, Bacillus, Arthrobacter, and Escherichia coli). The experimental result suggested that the mean absolute percentage error reached 4.11 %, 4.28 %, 4.49 %, and 4.53 % respectively, which is helpful to improve the accuracy of microbial concentration measurement.


Asunto(s)
Bacillus , Escherichia coli/metabolismo , Temperatura
7.
Trends Microbiol ; 32(4): 398-409, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37951768

RESUMEN

Predatory bacteria have been increasingly known for their ubiquity in environments and great functional potentials in controlling unwanted microorganisms. Fundamental understanding of the predation mechanisms, population dynamics, and interaction patterns underlying bacterial predation is required for wise exploitation of predatory bacteria for enhancing ecoenvironmental, animal, and human health. Here, we review the recent achievements on applying predatory bacteria in different systems as biocontrol agents and living antibiotics as well as new findings in their phylogenetic diversity and predation mechanisms. We finally propose critical issues that deserve priority research and highlight the necessity to combine classic culture-based and advanced culture-independent approaches to push research frontiers of bacterial predation across ecosystems for promising biocontrol and therapy strategies towards a sustainable ecoenvironment and health.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Humanos , Conducta Predatoria , Filogenia , Bacterias/genética
8.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003625

RESUMEN

Due to the extensive utilization of poly (ethylene terephthalate) (PET), a significant amount of PET waste has been discharged into the environment, endangering both human health and the ecology. As an eco-friendly approach to PET waste treatment, biodegradation is dependent on efficient strains and enzymes. In this study, a screening method was first established using polycaprolactone (PCL) and PET nanoparticles as substrates. A PET-degrading strain YX8 was isolated from the surface of PET waste. Based on the phylogenetic analysis of 16S rRNA and gyrA genes, this strain was identified as Bacillus safensis. Strain YX8 demonstrated the capability to degrade PET nanoparticles, resulting in the production of terephthalic acid (TPA), mono (2-hydroxyethyl) terephthalic acid (MHET), and bis (2-hydroxyethyl) terephthalic acid (BHET). Erosion spots on the PET film were observed after incubation with strain YX8. Furthermore, the extracellular enzymes produced by strain YX8 exhibited the ability to form a clear zone on the PCL plate and to hydrolyze PET nanoparticles to generate TPA, MHET, and BHET. This work developed a method for the isolation of PET-degrading microorganisms and provides new strain resources for PET degradation and for the mining of functional enzymes.


Asunto(s)
Etilenos , Tereftalatos Polietilenos , Humanos , Tereftalatos Polietilenos/química , Filogenia , ARN Ribosómico 16S/genética , Biodegradación Ambiental
9.
Front Microbiol ; 14: 1250602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789850

RESUMEN

Myxobacteria are widely distributed in various habitats of soil and oceanic sediment. However, it is unclear whether soil-dwelling myxobacteria tolerate a saline environment. In this study, a salt-tolerant myxobacterium Myxococcus sp. strain MxC21 was isolated from forest soil with NaCl tolerance >2% concentration. Under 1% salt-contained condition, strain MxC21 could kill and consume bacteria prey and exhibited complex social behaviors such as S-motility, biofilm, and fruiting body formation but adopted an asocial living pattern with the presence of 1.5% NaCl. To investigate the genomic basis of stress tolerance, the complete genome of MxC21 was sequenced and analyzed. Strain MxC21 consists of a circular chromosome with a total length of 9.13 Mbp and a circular plasmid of 64.3 kb. Comparative genomic analysis revealed that the genomes of strain MxC21 and M. xanthus DK1622 share high genome synteny, while no endogenous plasmid was found in DK1622. Further analysis showed that approximately 21% of its coding genes from the genome of strain MxC21 are predominantly associated with signal transduction, transcriptional regulation, and protein folding involved in diverse niche adaptation such as salt tolerance, which enables social behavior such as gliding motility, sporulation, and predation. Meantime, a high number of genes are also found to be involved in defense against oxidative stress and production of antimicrobial compounds. All of these functional genes may be responsible for the potential salt-toleration. Otherwise, strain MxC21 is the second reported myxobacteria containing indigenous plasmid, while only a small proportion of genes was specific to the circular plasmid of strain MxC21, and most of them were annotated as hypothetical proteins, which may have a direct relationship with the habitat adaptation of strain MxC21 under saline environment. This study provides an inspiration of the adaptive evolution of salt-tolerant myxobacterium and facilitates a potential application in the improvement of saline soil in future.

10.
Foods ; 12(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685090

RESUMEN

Porous starch is attracting considerable attention for its high surface area and shielding ability, properties which are useful in many food applications. In this study, native corn starch with 15, 25, and 45% degrees of hydrolysis (DH-15, DH-25, and DH-45) were prepared using a special raw starch-digesting amylase, AmyM, and their structural and functional properties were evaluated. DH-15, DH-25, and DH-45 exhibited porous surface morphologies, diverse pore size distributions and pore areas, and their adsorptive capacities were significantly enhanced by improved molecular interactions. Structural measures showed that the relative crystallinity decreased as the DH increased, while the depolymerization of starch double helix chains promoted interactions involving disordered chains, followed by chain rearrangement and the formation of sub-microcrystalline structures. In addition, DH-15, DH-25, and DH-45 displayed lower hydrolysis rates, and DH-45 showed a decreased C∞ value of 18.9% with higher resistant starch (RS) content and lower glucose release. Our results indicate that AmyM-mediated hydrolysis is an efficient pathway for the preparation of porous starches with different functionalities which can be used for a range of applications.

11.
Foods ; 12(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37761198

RESUMEN

Malto-oligosaccharides (MOSs) from starch conversion is advantageous for food and pharmaceutical applications. In this study, an efficient malto-oligosaccharide-forming α-amylase AmyCf was identified from myxobacter Cystobacter sp. strain CF23. AmyCf is composed of 417 amino acids with N-terminal 41 amino acids as the signal peptide, and conserved glycoside hydrolase family 13 (GH13) catalytic module and predicted C-terminal domain with ß-sheet structure are also identified. Phylogenetic and functional analysis demonstrated that AmyCf is a novel member of GH13_6 subfamily. The special activity of AmyCf toward soluble starch and raw wheat starch is 9249 U/mg and 11 U/mg, respectively. AmyCf has broad substrate specificity toward different types of starches without requiring Ca2+. Under ideal circumstances of 60 °C and pH 7.0, AmyCf hydrolyzes gelatinized starch into maltose and maltotriose and maltotetraose as the main hydrolytic products with more than 80% purity, while maltose and maltotriose are mainly produced from the hydrolysis of raw wheat starch with more than 95% purity. The potential applicability of AmyCf in starch processing is highlighted by its capacity to convert gelatinized starch and raw starch granules into MOSs. This enzymatic conversion technique shows promise for the low-temperature enzymatic conversion of raw starch.

12.
Nat Commun ; 14(1): 5646, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704617

RESUMEN

Public metabolites such as vitamins play critical roles in maintaining the ecological functions of microbial community. However, the biochemical and physiological bases for fine-tuning of public metabolites in the microbiome remain poorly understood. Here, we examine the interactions between myxobacteria and Phytophthora sojae, an oomycete pathogen of soybean. We find that host plant and soil microbes complement P. sojae's auxotrophy for thiamine. Whereas, myxobacteria inhibits Phytophthora growth by a thiaminase I CcThi1 secreted into extracellular environment via outer membrane vesicles (OMVs). CcThi1 scavenges the required thiamine and thus arrests the thiamine sharing behavior of P. sojae from the supplier, which interferes with amino acid metabolism and expression of pathogenic effectors, probably leading to impairment of P. sojae growth and pathogenicity. Moreover, myxobacteria and CcThi1 are highly effective in regulating the thiamine levels in soil, which is correlated with the incidence of soybean Phytophthora root rot. Our findings unravel a novel ecological tactic employed by myxobacteria to maintain the interspecific equilibrium in soil microbial community.


Asunto(s)
Myxococcales , Phytophthora , Glycine max , Tiamina , Rizosfera , Vesícula
13.
Foods ; 12(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37444224

RESUMEN

Mannoproteins, as yeast polysaccharides, have been utilized in food the industry as dietary fibers, emulsifying agents or fat replacers. Mannoprotein MP112, produced from yeast by enzymatic hydrolysis of myxobacterial ß-1,6-glucanase GluM, exhibits excellent emulsifying properties in emulsion preparation. In this study, we aimed to examine the application of stable emulsion with the addition of mannoprotein MP112 (MP112 emulsion) to reduce the fat content of sausages. The addition of MP112 emulsion in emulsified sausages significantly reduced the fat content and increased the moisture and protein contents of emulsified sausages without the expense of their good sensory quality. Moreover, the textural properties of sausages were markedly improved with the higher hardness, chewiness and cohesiveness, especially in the 50-75% replacement ratio of MP112 emulsion. On the other hand, MP112 emulsion replacement of animal fat markedly improved the nutritional composition of emulsified sausages; they displayed a higher PUFA/SFA ratio and lower n-6/n-3 ratio due to their saturated fatty acids being replaced by poly-unsaturated fatty acids. Meanwhile, the oxidative stability of sausages was improved linearly, corresponding to the increased replacement ratio of MP112 emulsion. Our results show that mannoprotein-based emulsions could be used as potential fat alternatives in developing reduced-fat meat products.

14.
J Agric Food Chem ; 71(25): 9656-9666, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37326459

RESUMEN

Fungal cell wall decomposition enzymes exhibit great potential for the development of efficient antifungal agents. However, their practical application is restricted due to incomplete understanding of the action mode. In our previous study, we identified that a novel outer membrane (OM) ß-1,6-glucanase GluM is deployed by predatory myxobacteria to feed on fungi. In this work, we provide deep insights into the antifungal mechanism of ß-1,6-glucanase and its potential in improving plant disease resistance. The fungal cell wall decomposition ability of GluM resulted in irregular hyphae morphology, changed chitin distribution, increased membrane permeability, and leakage of cell constituents in Magnaporthe oryzae Guy11. Under the attack pattern, the cell wall integrity pathway was activated by strain Guy11 for self-protection. GluM exhibited a distinct endo-model toward fungal cell wall; the favorite substrate of GluM toward fungal ß-1,6-glucan may give reason for its efficient antifungal activity compared with Trichoderma ß-1,6-glucanase. Moreover, released glucans from GluM hydrolysis of fungal cell wall functioned as an elicitor and induced rice immunity by means of jasmonic acid pathway. Based on the dual roles of antifungal properties, gluM transgenic plants conferred enhanced resistance against fungal infection.


Asunto(s)
Antifúngicos , Glucanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Glucanos/metabolismo , Pared Celular/química , Hifa , Quitina/metabolismo
15.
ISME J ; 17(7): 1089-1103, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37156836

RESUMEN

As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp. AC19 secretes a carbohydrate-active enzyme (CAZyme) cocktail during predation on oomycetes Phytophthora. These enzymes include three specialized ß-1,3-glucanases (AcGlu13.1, -13.2 and -13.3) that act as a cooperative consortium to target ß-1,3-glucans of Phytophthora. However, the CAZymes showed no hydrolytic effects on fungal cells, even though fungi contain ß-1,3-glucans. Heterologous expression of AcGlu13.1, -13.2 or -13.3 enzymes in Myxococcus xanthus DK1622, a model myxobacterium that antagonizes but does not predate on P. sojae, conferred a cooperative and mycophagous ability that stably maintains myxobacteria populations as a mixture of engineered strains. Comparative genomic analyses suggest that these CAZymes arose from adaptive evolution among Cystobacteriaceae myxobacteria for a specific prey killing behavior, whereby the presence of Phytophthora promotes growth of myxobacterial taxa by nutrient release and consumption. Our findings demonstrate that this lethal combination of CAZymes transforms a non-predatory myxobacterium into a predator with the ability to feed on Phytophthora, and provides new insights for understanding predator-prey interactions. In summary, our work extends the repertoire of myxobacteria predatory strategies and their evolution, and suggests that these CAZymes can be engineered as a functional consortium into strains for biocontrol of Phytophothora diseases and hence crop protection.


Asunto(s)
Myxococcales , Myxococcus xanthus , Phytophthora , Animales , Myxococcales/genética , Conducta Predatoria , Myxococcus xanthus/genética , Glucanos , Phytophthora/genética
16.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 1949-1962, 2023 May 25.
Artículo en Chino | MEDLINE | ID: mdl-37212223

RESUMEN

Polyethylene (PE) is the most abundantly used synthetic resin and one of the most resistant to degradation, and its massive accumulation in the environment has caused serious pollution. Traditional landfill, composting and incineration technologies can hardly meet the requirements of environmental protection. Biodegradation is an eco-friendly, low-cost and promising method to solve the plastic pollution problem. This review summarizes the chemical structure of PE, the species of PE degrading microorganisms, degrading enzymes and metabolic pathways. Future research is suggested to focus on the screening of high-efficiency PE degrading strains, the construction of synthetic microbial consortia, the screening and modification of degrading enzymes, so as to provide selectable pathways and theoretical references for PE biodegradation research.


Asunto(s)
Bacterias , Polietileno , Polietileno/química , Polietileno/metabolismo , Bacterias/metabolismo , Plásticos/metabolismo , Biodegradación Ambiental , Consorcios Microbianos
17.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 1963-1975, 2023 May 25.
Artículo en Chino | MEDLINE | ID: mdl-37212224

RESUMEN

Polyurethane (PUR) plastics is widely used because of its unique physical and chemical properties. However, unreasonable disposal of the vast amount of used PUR plastics has caused serious environmental pollution. The efficient degradation and utilization of used PUR plastics by means of microorganisms has become one of the current research hotspots, and efficient PUR degrading microbes are the key to the biological treatment of PUR plastics. In this study, an Impranil DLN-degrading bacteria G-11 was isolated from used PUR plastic samples collected from landfill, and its PUR-degrading characteristics were studied. Strain G-11 was identified as Amycolatopsis sp. through 16S rRNA gene sequence alignment. PUR degradation experiment showed that the weight loss rate of the commercial PUR plastics upon treatment of strain G-11 was 4.67%. Scanning electron microscope (SEM) showed that the surface structure of G-11-treated PUR plastics was destroyed with an eroded morphology. Contact angle and thermogravimetry analysis (TGA) showed that the hydrophilicity of PUR plastics increased along with decreased thermal stability upon treatment by strain G-11, which were consistent with the weight loss and morphological observation. These results indicated that strain G-11 isolated from landfill has potential application in biodegradation of waste PUR plastics.


Asunto(s)
Plásticos , Poliuretanos , Plásticos/metabolismo , Poliuretanos/química , ARN Ribosómico 16S , Bacterias/genética , Biodegradación Ambiental
18.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 1976-1986, 2023 May 25.
Artículo en Chino | MEDLINE | ID: mdl-37212225

RESUMEN

Although polyurethane (PUR) plastics play important roles in daily life, its wastes bring serious environmental pollutions. Biological (enzymatic) degradation is considered as an environmentally friendly and low-cost method for PUR waste recycling, in which the efficient PUR-degrading strains or enzymes are crucial. In this work, a polyester PUR-degrading strain YX8-1 was isolated from the surface of PUR waste collected from a landfill. Based on colony morphology and micromorphology observation, phylogenetic analysis of 16S rDNA and gyrA gene, as well as genome sequence comparison, strain YX8-1 was identified as Bacillus altitudinis. The results of high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) showed that strain YX8-1 was able to depolymerize self-synthesized polyester PUR oligomer (PBA-PU) to produce a monomeric compound 4, 4'-methylene diphenylamine. Furthermore, strain YX8-1 was able to degrade 32% of the commercialized polyester PUR sponges within 30 days. This study thus provides a strain capable of biodegradation of PUR waste, which may facilitate the mining of related degrading enzymes.


Asunto(s)
Poliésteres , Poliuretanos , Poliuretanos/química , Poliésteres/química , Cromatografía Liquida , Filogenia , Espectrometría de Masas en Tándem , Bacterias/metabolismo , Biodegradación Ambiental
19.
Pest Manag Sci ; 79(6): 2152-2162, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36729081

RESUMEN

BACKGROUND: Frequent fungal diseases tend to lead to severe losses in rice production. As a main component of the fungal cell wall, glucan plays an important role in the growth and development of fungi. Glucanase can inhibit the growth of fungi by breaking glycosidic bonds, and may be a promising target for developing rice varieties with broad-spectrum disease resistance. RESULTS: We transferred a codon-optimized ß-1,6-glucanase gene (GluM) from myxobacteria into the japonica rice variety Zhonghua11 (ZH11), and obtained a large number of individual transgenic plants with GluM overexpression. Based on molecular analysis, three single-copy homozygous lines with GluM overexpression were selected for assessment of fungal disease resistance at the T3 generation. Compared with that of the recipient cultivar ZH11, the area of rice blast lesion in transgenic rice was reduced by 82.71%; that of sheath blight lesion was decreased by 35.76%-43.67%; the sheath blight resistance in the field was enhanced by an average of 0.75 grade over 3 years; and the incidence of diseased panicles due to rice false smut was decreased by 65.79%. More importantly, there was no obvious loss of yield (without a significant effect on agronomic traits). Furthermore, plants overexpressing a ß-1,6-glucanase gene showed higher disease resistance than rice plants overexpressing a ß-1,3-glucanase gene derived from tobacco. CONCLUSION: The ß-1,6-glucanase gene GluM can confer broad-spectrum disease resistance to rice, providing an environmentally friendly alternative way to effectively manage fungal pathogens in rice production. © 2023 Society of Chemical Industry.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Resistencia a la Enfermedad/genética , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
20.
Sci Total Environ ; 871: 161680, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682558

RESUMEN

Predatory myxobacteria are keystone taxa in the soil microbial food web that potentially regulate soil microbial community structure and ecosystem functions. However, little is known about the community assembly processes of myxobacteria in typical farmland soils over large geographic scales, in addition to their relationship with soil multi-nutrient cycling. Here, we used high-throughput sequencing techniques and phylogenetic null modeling analysis to investigate the distribution patterns and assembly processes of myxobacteria communities, in addition to interactions between myxobacteria communities and soil multi-nutrient cycling. Anaeromyxobacter (28.5 %) and Haliangium (19.6 %) were the dominant myxobacteria genera in all samples, and myxobacteria community similarities exhibited distinct distance-decay relationships. Stochastic processes (~77.8 %) were the dominant ecological processes driving the assembly of predatory myxobacteria communities over large geographical scales and under three fertilization regimes. Myxobacteria community structure was influenced by geographic factors (location and climate), soil factors (soil pH, soil organic carbon, total nitrogen, and total potassium), and fertilization, with myxobacteria community assembly being more sensitive to geographic factors. Organic-inorganic combined fertilization (NPKM) increased the proportions of deterministic processes in myxobacteria community assembly. Moreover, myxobacteria community assembly and diversity were closely associated with soil multi-nutrient cycling. Hence, myxobacteria phylogenetic α-diversity represented by NTI index is a potential bioindicators for soil multi-nutrient cycling. Overall, our findings comprehensively reveal the mechanisms of assembly of myxobacteria communities in soils over large geographic scales, and provide a theoretical basis for further research on the role of predatory bacteria on soil nutrient cycling in agro-ecosystems.


Asunto(s)
Microbiota , Myxococcales , Suelo , Granjas , Filogenia , Carbono , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...