Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397111

RESUMEN

Bioactive peptides (BPs) are molecules of paramount importance with great potential for the development of functional foods, nutraceuticals or therapeutics for the prevention or treatment of various diseases. A functional BP-rich dairy product was produced by lyophilisation of bovine milk fermented by the autochthonous strains Lactococcus lactis subsp. lactis ZGBP5-51, Enterococcus faecium ZGBP5-52 and Enterococcus faecalis ZGBP5-53 isolated from the same artisanal fresh cheese. The efficiency of the proteolytic system of the implemented strains in the production of BPs was confirmed by a combined high-throughput mass spectrometry (MS)-based peptidome profiling and an in silico approach. First, peptides released by microbial fermentation were identified via a non-targeted peptide analysis (NTA) comprising reversed-phase nano-liquid chromatography (RP nano-LC) coupled with matrix-assisted laser desorption/ionisation-time-of-flight/time-of-flight (MALDI-TOF/TOF) MS, and then quantified by targeted peptide analysis (TA) involving RP ultrahigh-performance LC (RP-UHPLC) coupled with triple-quadrupole MS (QQQ-MS). A combined database and literature search revealed that 10 of the 25 peptides identified in this work have bioactive properties described in the literature. Finally, by combining the output of MS-based peptidome profiling with in silico bioactivity prediction tools, three peptides (75QFLPYPYYAKPA86, 40VAPFPEVFGK49, 117ARHPHPHLSF126), whose bioactive properties have not been previously reported in the literature, were identified as potential BP candidates.


Asunto(s)
Leche , Péptidos , Animales , Leche/química , Péptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Enterococcus faecalis , Proteómica
2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895001

RESUMEN

Lactiplantibacillus plantarum D13 shows antistaphylococcal and antilisterial activity, probably due to the synthesis of a presumptive bacteriocin with antibiofilm capacity released in the cell-free supernatant (CFS), whose inhibitory effect is enhanced by cocultivation with susceptible strains. An in silico analysis of the genome of strain D13 confirmed the pln gene cluster. Genes associated with plantaricin biosynthesis, structure, transport, antimicrobial activity, and immunity of strain D13 were identified. Furthermore, the predicted homology-based 3D structures of the cyclic conformation of PlnE, PlnF, PlnJ, and PlnK revealed that PlnE and PlnK contain two helices, while PlnF and PlnJ contain one and two helices, respectively. The potential of the strain to modulate the intestinal microbiota in healthy or dextran sulphate sodium (DSS)-induced colitis mouse models was also investigated. Strain D13 decreased the disease activity index (DAI) and altered the gut microbiota of mice with DSS-induced colitis by increasing the ratio of beneficial microbial species (Allobaculum, Barnesiella) and decreasing those associated with inflammatory bowel disease (Candidatus Saccharimonas). This suggests that strain D13 helps to restore the gut microbiota after DSS-induced colitis, indicating its potential for further investigation as a probiotic strain for the prevention and treatment of colitis.


Asunto(s)
Bacteriocinas , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Bacteriocinas/genética , Bacteriocinas/farmacología , Bacterias , Modelos Animales de Enfermedad , Sulfato de Dextran/toxicidad , Colon , Ratones Endogámicos C57BL
3.
Food Technol Biotechnol ; 61(4): 418-429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38205053

RESUMEN

Research background: Increasing awareness of the importance of nutrition in health promotion and disease prevention has driven to the development of foods for special medical purposes (FSMPs). In this study, the probiotic strain Lacticaseibacillus paracasei ssp. paracasei (Lacticaseibacillus casei 431®) was incorporated into FSMPs to develop an innovative product. The aim was to investigate the influence of the FSMP matrix on the specific probiotic properties of L. casei 431® in vitro. Experimental approach: A series of in vitro experiments were performed as part of the probiotic approach. After evaluation of antibiotic susceptibility profiles, functional properties such as survival under simulated gastrointestinal tract (GIT) conditions, bile salt deconjugation activities, cholesterol assimilation, antagonistic activity against spoilage bacteria and adhesion to Caco-2 cell line monolayers and extracellular matrix proteins were investigated. Results and conclusions: The L. casei 431® strain, both the lyophilised strain and the strain isolated from the FSMP matrix, effectively survived the simulated adverse gastrointestinal conditions without significant effects of the food matrix. The effect of the FSMP matrix on the deconjugation activity of the bile salts of L. casei 431® was minimal; however, cholesterol assimilation was increased by 16.4 %. L. casei 431® had antibacterial activity against related lactic acid bacteria regardless of whether it was used in FSMPs or not. Conversely, the probiotic strain isolated from FSMP matrix had significantly higher inhibitory activity against six potential pathogens than the lyophilised culture. The autoaggregation ability of the L. casei 431® cells was not affected by the FSMP matrix. The adhesion of L. casei 431® bacterial cells to the extracellular matrix proteins was reduced after treatment with proteinase K, with the highest adhesion observed to laminin. The adhesion of L. casei 431® reduced the binding of E. coli 3014 by 1.81 log units and the binding of S. Typhimurium FP1 to Caco-2 cell lines by 1.85 log units, suggesting the potential for competitive exclusion of these pathogens. Novelty and scientific contribution: The results support the positive effect of the FSMP matrix on the specific probiotic properties of L. casei 431®, such as antibacterial activity, bile salt deconjugation and cholesterol assimilation, while the incorporation of this probiotic strain adds functional value to the FSMPs. The synergistic effect achieved by the joint application of L. casei 431® and innovative FSMP matrix contributed to the development of the novel formulation of an improved functional food product with added value.

4.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36430861

RESUMEN

Human milk not only provides a perfect balance of nutrients to meet all the needs of the infant in the first months of life but also contains a variety of bacteria that play a key role in tailoring the neonatal faecal microbiome. Microbiome analysis of human milk and infant faeces from mother-breastfed infant pairs was performed by sequencing the V1-V3 region of the 16S rRNA gene using the Illumina MiSeq platform. According to the results, there is a connection in the composition of the microbiome in each mother-breastfed infant pair, supporting the hypothesis that the infant's gut is colonised with bacteria from human milk. MiSeq sequencing also revealed high biodiversity of the human milk microbiome and the infant faecal microbiome, whose composition changes during lactation and infant development, respectively. A total of 28 genetically distinct strains were selected by hierarchical cluster analysis of RAPD-PCR (Random Amplified Polymorphic DNA-Polymerase Chain Reaction) electrophoresis profiles of 100 strains isolated from human milk and identified by 16S RNA sequencing. Since certain cellular molecules may support their use as probiotics, the next focus was to detect (S)-layer proteins, bacteriocins and exopolysaccharides (EPSs) that have potential as therapeutic biomolecules. SDS-PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis) coupled with LC-MS (liquid chromatography-mass spectrometry) analysis revealed that four Levilactobacillus brevis strains expressed S-layer proteins, which were identified for the first time in strains isolated from human milk. The potential biosynthesis of plantaricin was detected in six Lactiplantibacillus plantarum strains by PCR analysis and in vitro antibacterial studies. 1H NMR (Proton Nuclear Magnetic Resonance) analysis confirmed EPS production in only one strain, Limosilactobacillus fermentum MC1. The overall microbiome analysis suggests that human milk contributes to the establishment of the intestinal microbiota of infants. In addition, it is a promising source of novel Lactobacillus strains expressing specific functional biomolecules.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Lactante , Recién Nacido , Femenino , Niño , Humanos , Leche Humana/microbiología , ARN Ribosómico 16S/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Microbiota/genética , Bacterias/genética
5.
Molecules ; 27(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35011392

RESUMEN

This study aimed to define a consortium of lactic acid bacteria (LAB) that will bring added value to dried fresh cheese through specific probiotic properties and the synthesis of bioactive peptides (biopeptides). The designed LAB consortium consisted of three Lactobacillus strains: S-layer carrying Levilactobacillus brevis D6, exopolysaccharides producing Limosilactobacillus fermentum D12 and plantaricin expressing Lactiplantibacillus plantarum D13, and one Enterococcus strain, Enterococcus faecium ZGZA7-10. Chosen autochthonous LAB strains exhibited efficient adherence to the Caco-2 cell line and impacted faecal microbiota biodiversity. The cheese produced by the LAB consortium showed better physicochemical, textural and sensory properties than the cheese produced by a commercial starter culture. Liquid chromatography coupled with matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (LC-MALDI-TOF/TOF) showed the presence of 18 specific biopeptides in dried fresh cheeses. Their identification and relative quantification was confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using multiple reaction monitoring (MRM). The results also showed that their synthesis resulted mainly from ß-casein and also α-S1 casein degradation by proteolytic activities of the LAB consortium. The designed LAB consortium enhanced the functional value of the final product through impact on biopeptide concentrations and specific probiotic properties.


Asunto(s)
Caseínas/metabolismo , Queso/análisis , Queso/microbiología , Análisis de los Alimentos , Microbiología de Alimentos , Lactobacillales/fisiología , Péptidos/metabolismo , Secuencia de Aminoácidos , Caseínas/química , Fenómenos Químicos , Cromatografía Liquida , Fermentación , Genoma Bacteriano , Genómica/métodos , Péptidos/química , Proteolisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...