Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Microbiol ; 69(6): 854-863, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31958048

RESUMEN

Introduction. Management of steroid-refractory ulcerative colitis has predominantly involved treatment with systemic cyclosporine A (CyA) and infliximab.Aim. The purpose of this study was to assess the effect of using a colon-targeted delivery system CyA formulation on the composition and functionality of the gut microbiota.Methodology. Ex vivo faecal fermentations from six healthy control subjects were treated with coated minispheres (SmPill) with (+) or without (-) CyA and compared with a non-treated control in a model colon system. In addition, the in vivo effect of the SmPill+CyA formulation was investigated by analysing the gut microbiota in faecal samples collected before the administration of SmPill+CyA and after 7 consecutive days of administration from eight healthy subjects who participated in a pilot study.Results. Analysis of faecal samples by 16S rRNA gene sequencing indicated little variation in the diversity or relative abundance of the microbiota composition before or after treatment with SmPill minispheres with or without CyA ex vivo or with CyA in vivo. Short-chain fatty acid profiles were evaluated using gas chromatography, showing an increase in the concentration of n-butyrate (P=0.02) and acetate (P=0.32) in the faecal fermented samples incubated in the presence of SmPill minispheres with or without CyA. This indicated that increased acetate and butyrate production was attributed to a component of the coated minispheres rather than an effect of CyA on the microbiota. Butyrate and acetate levels also increased significantly (P=0.05 for both) in the faecal samples of healthy individuals following 7 days' treatment with SmPill+CyA in the pilot study.Conclusion. SmPill minispheres with or without CyA at the clinically relevant doses tested here have negligible direct effects on the gut microbiota composition. Butyrate and acetate production increased, however, in the presence of the beads in an ex vivo model system as well as in vivo in healthy subjects. Importantly, this study also demonstrates the relevance and value of using ex vivo colon models to predict the in vivo impact of colon-targeted drugs directly on the gut microbiota.


Asunto(s)
Ciclosporina/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Acetatos/metabolismo , Adulto , Butiratos/metabolismo , Colon/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ácidos Grasos Volátiles/biosíntesis , Heces/química , Femenino , Humanos , Masculino , Microesferas , Persona de Mediana Edad , Proyectos Piloto
2.
J Pharm Pharmacol ; 67(5): 685-95, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25650335

RESUMEN

OBJECTIVES: Colorectal cancer (CRC) is a life-threatening disease that can develop as a consequence of a sustained chronic inflammatory pathology of the colon. Although not devoid of side effects, the anti-inflammatory drug celecoxib (CLX) has been shown to exert protective effects in CRC therapy. The purpose of this study was to develop and characterise a novel CLX microbead formulation suitable for use in the treatment and prevention of CRC, which has the potential to minimise the side effects associated with CLX. METHODS: The study involved the assessment of the effectiveness of CLX formulations in an in-vitro cell model (HT29 cells) and a comparison of these effects to that of the marketed CLX product, Celebrex. Liquid CLX formulations were developed as precursors to microbead formulations. The effect of liquid CLX formulations on HT29 cell viability (MTT and flow cytometry apoptotic assays) and motility (scratch wound assay) were assessed and compared with the effect of Celebrex. A correlation between the in-vitro dissolution performance of the formulations and the effect in the cell model was also explored. Liquid CLX formulations were translated into an optimised CLX microbead formulation, and a colonic targeted sustained release coat (Surelease) was applied to the beads with the aim of producing a formulation for a future in-vivo study to compare the effect of the coated CLX microbeads versus Celebrex in the attenuation of CRC tumours and inflammation in a CRC murine model. The production of CLX microbeads was scaled-up using vibrating-jet encapsulation technology to allow for the development of an optimised dissolution profile to enable colonic release. KEY FINDINGS: In-vitro cell viability and motility were shown to be significantly reduced after treatment with CLX liquid formulations relative to the control, whereas the results for treatment with Celebrex were comparable with the control. Dissolution experiments and correlation analysis demonstrated that the formulations that showed a greater extent of drug release had reduced cell viability and motility. The CLX liquid formulations were translated into colon-targeted CLX microbeads suitable for use in a future in-vivo mouse study. CONCLUSIONS: These results represent a significant step forward in the chemopreventative treatment of CRC using CLX, as the microbead formulation developed suggests the possibility of presenting CLX in a format that has the potential to minimise gastrointestinal and cardiovascular side effects.


Asunto(s)
Celecoxib/administración & dosificación , Celecoxib/uso terapéutico , Química Farmacéutica/métodos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control , Sistemas de Liberación de Medicamentos/métodos , Microesferas , Celecoxib/efectos adversos , Celecoxib/química , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Células HT29 , Humanos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA