Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(16): E2020-9, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848000

RESUMEN

Zfp57 is a maternal-zygotic effect gene that maintains genomic imprinting. Here we report that Zfp57 mutants exhibited a variety of cardiac defects including atrial septal defect (ASD), ventricular septal defect (VSD), thin myocardium, and reduced trabeculation. Zfp57 maternal-zygotic mutant embryos displayed more severe phenotypes with higher penetrance than the zygotic ones. Cardiac progenitor cells exhibited proliferation and differentiation defects in Zfp57 mutants. ZFP57 is a master regulator of genomic imprinting, so the DNA methylation imprint was lost in embryonic heart without ZFP57. Interestingly, the presence of imprinted DLK1, a target of ZFP57, correlated with NOTCH1 activation in cardiac cells. These results suggest that ZFP57 may modulate NOTCH signaling during cardiac development. Indeed, loss of ZFP57 caused loss of NOTCH1 activation in embryonic heart with more severe loss observed in the maternal-zygotic mutant. Maternal and zygotic functions of Zfp57 appear to play redundant roles in NOTCH1 activation and cardiomyocyte differentiation. This serves as an example of a maternal effect that can influence mammalian organ development. It also links genomic imprinting to NOTCH signaling and particular developmental functions.


Asunto(s)
Corazón/embriología , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Cigoto/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Unión al Calcio , Diferenciación Celular , Proliferación Celular , Regulación hacia Abajo , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Modelos Biológicos , Mutación , Miocitos Cardíacos/patología , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Células Madre/citología , Factores de Transcripción/metabolismo
2.
Blood ; 119(21): 4898-907, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22490678

RESUMEN

Aging degrades hematopoietic stem cell (HSC) functions, including stress response; however, the involved molecular pathways are incompletely defined. Murine BM conditionally deleted for One-Twenty-Two-1 (Ott1), is able to maintain lifelong hematopoiesis and has preserved numbers of long-term HSCs, yet cannot repopulate nor sustain itself after transplantation against a competitor even when Ott1 is excised after engraftment. We show, specifically under replicative stress, that Ott1-deleted HSCs have a significant reduction of the G(0) cell-cycle fraction associated with self-renewal and undergo early failure. Therefore, Ott1 is required to preserve HSC quiescence during stress but not steady-state hematopoiesis. Reduced tolerance of replicative stress, increased myeloid potential, and greater absolute numbers are mutual characteristics of both Ott1-deleted and aged HSCs, and comparison of their gene expression profiles reveals a shared signature. Ott1-deleted HSCs share multiple aging-associated physiologic changes, including increases in NF-κB activation and DNA damage. Loss of Ott1 causes increased reactive oxygen species; however, antioxidant treatment does not rescue the competitive defect, indicating the existence of additional essential Ott1-dependent HSC pathways. In conclusion, our data establish a requirement for Ott1 in stress hematopoiesis and suggest that Ott1-dependent processes may converge with those affected by aging.


Asunto(s)
Proliferación Celular , Senescencia Celular/genética , Células Madre Hematopoyéticas/fisiología , Proteínas de Unión al ARN/fisiología , Fase de Descanso del Ciclo Celular/genética , Estrés Fisiológico , Animales , Células Cultivadas , Senescencia Celular/fisiología , Técnicas de Inactivación de Genes , Hematopoyesis/genética , Hematopoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Fase de Descanso del Ciclo Celular/fisiología , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
3.
J Biol Chem ; 287(3): 2107-18, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22144682

RESUMEN

Previously, we discovered that ZFP57 is a maternal-zygotic effect gene, and it maintains DNA methylation genomic imprint at multiple imprinted regions in mouse embryos. Despite these findings, it remains elusive how DNA methyltransferases are targeted to the imprinting control regions to initiate and maintain DNA methylation imprint. To gain insights into these essential processes in genomic imprinting, we examined how ZFP57 maintains genomic DNA methylation imprint in mouse embryonic stem (ES) cells. Here we demonstrate that the loss of ZFP57 in mouse ES cells led to a complete loss of genomic DNA methylation imprint at multiple imprinted regions, similar to its role in mouse embryos. However, reintroduction of ZFP57 into Zfp57-null ES cells did not result in reacquisition of DNA methylation imprint, suggesting that the memory for genomic imprinting had been lost or altered in Zfp57-null ES cells in culture. Interestingly, ZFP57 and DNA methyltransferases could form complexes in the presence of KAP1/TRIM28/TIF1ß when co-expressed in COS cells. We also found that the wild-type exogenous ZFP57 but not the mutant ZFP57 lacking the KRAB box that interacts with its co-factor KAP1/TRIM28/TIF1ß could substitute for the endogenous ZFP57 in maintaining the DNA methylation imprint in ES cells. These results suggest that ZFP57 may recruit DNA methyltransferases to its target regions to maintain DNA methylation imprint, and this interaction is likely facilitated by KAP1/TRIM28/TIF1ß.


Asunto(s)
Metilación de ADN/fisiología , Metilasas de Modificación del ADN/metabolismo , Células Madre Embrionarias/metabolismo , Impresión Genómica/fisiología , Proteínas Represoras/metabolismo , Dedos de Zinc , Animales , Células COS , Chlorocebus aethiops , Metilasas de Modificación del ADN/genética , Células Madre Embrionarias/citología , Ratones , Ratones Mutantes , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito
4.
Cell Stem Cell ; 4(6): 559-67, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19497284

RESUMEN

We report the unexpected finding that loss of Hh signaling through conditional deletion of Smoothened (Smo) in the adult hematopoietic compartment has no apparent effect on adult hematopoiesis, including peripheral blood count, number or cell-cycle status of stem or progenitor cells, hematopoietic colony-forming potential, long-term repopulating activity in competitive repopulation assays, or stress response to serial 5-fluorouracil treatment. Furthermore, pharmacologic inhibition of Hh signaling with a potent and selective small molecule antagonist has no substantive effect on hematopoiesis in the mouse. In addition, Hh signaling is not required for the development of MLL-AF9-mediated acute myeloid leukemia (AML). Taken together, these data demonstrate that Hh signaling is dispensable for normal hematopoietic development and hematopoietic stem cell function, indicating that targeting of Hh signaling in solid tumors is not likely to result in hematopoietic toxicity. Furthermore, the Hh pathway may not be a compelling target in certain hematopoietic malignancies.


Asunto(s)
Proteínas Hedgehog/fisiología , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Transducción de Señal/fisiología , Células Madre Adultas/fisiología , Animales , Leucemia Mieloide Aguda/etiología , Ratones , Neoplasias Experimentales/etiología , Receptores Acoplados a Proteínas G/deficiencia , Receptor Smoothened
5.
Mol Cell Biol ; 29(2): 333-41, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18981216

RESUMEN

The infant leukemia-associated gene Ott1 (Rbm15) has broad regulatory effects within murine hematopoiesis. However, germ line Ott1 deletion results in fetal demise prior to embryonic day 10.5, indicating additional developmental requirements for Ott1. The spen gene family, to which Ott1 belongs, has a transcriptional activation/repression domain and RNA recognition motifs and has a significant role in the development of the head and thorax in Drosophila melanogaster. Early Ott1-deficient embryos show growth retardation and incomplete closure of the notochord. Further analysis demonstrated placental defects in the spongiotrophoblast and syncytiotrophoblast layers, resulting in an arrest of vascular branching morphogenesis. The rescue of the placental defect using a conditional allele with a trophoblast-sparing cre transgene allowed embryos to form a normal placenta and survive gestation. This outcome showed that the process of vascular branching morphogenesis in Ott1-deficient animals was regulated by the trophoblast compartment rather than the fetal vasculature. Mice surviving to term manifested hyposplenia and abnormal cardiac development. Analysis of global gene expression of Ott1-deficient embryonic hearts showed an enrichment of hypoxia-related genes and a significant alteration of several candidate genes critical for cardiac development. Thus, Ott1-dependent pathways, in addition to being implicated in leukemogenesis, may also be important for the pathogenesis of placental insufficiency and cardiac malformations.


Asunto(s)
Proteínas de Drosophila/metabolismo , Corazón/embriología , Placenta/irrigación sanguínea , Placentación , Proteínas de Unión al ARN/metabolismo , Bazo/embriología , Animales , Hipoxia de la Célula , Proteínas de Drosophila/genética , Embrión de Mamíferos/patología , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Noqueados , Ratones Transgénicos , Morfogénesis , Organogénesis , Placenta/anatomía & histología , Placenta/patología , Embarazo , Proteínas de Unión al ARN/genética , Trofoblastos/fisiología , Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Cancer Cell ; 13(4): 311-20, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18394554

RESUMEN

We report that TG101348, a selective small-molecule inhibitor of JAK2 with an in vitro IC50 of approximately 3 nM, shows therapeutic efficacy in a murine model of myeloproliferative disease induced by the JAK2V617F mutation. In treated animals, there was a statistically significant reduction in hematocrit and leukocyte count, a dose-dependent reduction/elimination of extramedullary hematopoiesis, and, at least in some instances, evidence for attenuation of myelofibrosis. There were no apparent toxicities and no effect on T cell number. In vivo responses were correlated with surrogate endpoints, including reduction/elimination of JAK2V617F disease burden assessed by quantitative genomic PCR, suppression of endogenous erythroid colony formation, and in vivo inhibition of JAK-STAT signal transduction as assessed by flow cytometric measurement of phosphorylated Stat5.


Asunto(s)
Sustitución de Aminoácidos , Modelos Animales de Enfermedad , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Policitemia Vera/tratamiento farmacológico , Policitemia Vera/enzimología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirrolidinas/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Trasplante de Médula Ósea , Línea Celular Tumoral , Ensayo de Unidades Formadoras de Colonias , Determinación de Punto Final , Citometría de Flujo , Sistema Hematopoyético/citología , Sistema Hematopoyético/efectos de los fármacos , Humanos , Janus Quinasa 2/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenilalanina/genética , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Pirrolidinas/farmacocinética , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacocinética , Tasa de Supervivencia , Resultado del Tratamiento , Valina/genética
7.
Cancer Cell ; 12(4): 367-80, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17936561

RESUMEN

Despite their known transforming properties, the effects of leukemogenic FLT3-ITD mutations on hematopoietic stem and multipotent progenitor cells and on hematopoietic differentiation are not well understood. We report a mouse model harboring an ITD in the murine Flt3 locus that develops myeloproliferative disease resembling CMML and further identified FLT3-ITD mutations in a subset of human CMML. These findings correlated with an increase in number, cell cycling, and survival of multipotent stem and progenitor cells in an ITD dose-dependent manner in animals that exhibited alterations within their myeloid progenitor compartments and a block in normal B cell development. This model provides insights into the consequences of constitutive signaling by an oncogenic tyrosine kinase on hematopoietic progenitor quiescence, function, and cell fate.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas/metabolismo , Leucemia Mielomonocítica Crónica/metabolismo , Células Madre Multipotentes/metabolismo , Mutación , Trastornos Mieloproliferativos/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Exones , Regulación Neoplásica de la Expresión Génica , Genotipo , Células Madre Hematopoyéticas/patología , Humanos , Estimación de Kaplan-Meier , Leucemia Experimental/metabolismo , Leucemia Experimental/patología , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/mortalidad , Leucemia Mielomonocítica Crónica/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre Multipotentes/patología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Fenotipo , Transducción de Señal , Tirosina Quinasa 3 Similar a fms/genética
8.
Proc Natl Acad Sci U S A ; 104(14): 6001-6, 2007 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-17376872

RESUMEN

OTT1(RBM15) was originally described as a 5' translocation partner of the MAL(MKL1) gene in t(1,22)(p13;q13) infant acute mega karyocytic leukemia. OTT1 has no established physiological function, but it shares homology with the spen/Mint/SHARP family of proteins defined by three amino-terminal RNA recognition motifs and a carboxyl-terminal SPOC (Spen paralog and ortholog carboxyl-terminal) domain believed to act as a transcriptional repressor. To define the role of OTT1 in hematopoiesis and help elucidate the mechanism of t(1,22) acute megakaryocytic leukemia pathogenesis, a conditional allele of Ott1 was generated in mice. Deletion of Ott1 in adult mice caused a loss of peripheral B cells due to a block in pro/pre-B differentiation. There is myeloid and megakaryocytic expansion in spleen and bone marrow, an increase in the Lin(-)Sca-1(+)c-Kit(+) compartment that includes hematopoietic stem cells, and a shift in progenitor fate toward granulocyte differentiation. These data show a requirement for Ott1 in B lymphopoiesis, and inhibitory roles in the myeloid, megakaryocytic, and progenitor compartments. The ability of Ott1 to affect hematopoietic cell fate and expansion in multiple lineages is a novel attribute for a spen family member and delineates Ott1 from other known effectors of hematopoietic development. It is plausible that dysregulation of Ott1-dependent hematopoietic developmental pathways, in particular those affecting the megakaryocyte lineage, may contribute to OTT1-MAL-mediated leukemogenesis.


Asunto(s)
Proteínas de Drosophila/fisiología , Hematopoyesis/fisiología , Sistema Hematopoyético/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Linfocitos B/fisiología , Células de la Médula Ósea/citología , Linaje de la Célula , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Proteínas de Drosophila/genética , Leucemia Megacarioblástica Aguda/etiología , Ratones , Ratones Mutantes , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Bazo/citología
9.
Cell ; 128(2): 325-39, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17254970

RESUMEN

To understand the role of FoxO family members in hematopoiesis, we conditionally deleted FoxO1, FoxO3, and FoxO4 in the adult hematopoietic system. FoxO-deficient mice exhibited myeloid lineage expansion, lymphoid developmental abnormalities, and a marked decrease of the lineage-negative Sca-1+, c-Kit+ (LSK) compartment that contains the short- and long-term hematopoietic stem cell (HSC) populations. FoxO-deficient bone marrow had defective long-term repopulating activity that correlated with increased cell cycling and apoptosis of HSC. Notably, there was a marked context-dependent increase in reactive oxygen species (ROS) in FoxO-deficient HSC compared with wild-type HSC that correlated with changes in expression of genes that regulate ROS. Furthermore, in vivo treatment with the antioxidative agent N-acetyl-L-cysteine resulted in reversion of the FoxO-deficient HSC phenotype. Thus, FoxO proteins play essential roles in the response to physiologic oxidative stress and thereby mediate quiescence and enhanced survival in the HSC compartment, a function that is required for its long-term regenerative potential.


Asunto(s)
Células Sanguíneas/metabolismo , Diferenciación Celular/genética , Factores de Transcripción Forkhead/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Estrés Oxidativo/genética , Animales , Antioxidantes/farmacología , Células Sanguíneas/citología , Células Sanguíneas/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Médula Ósea/fisiopatología , Proteínas de Ciclo Celular , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Regulación de la Expresión Génica/fisiología , Hematopoyesis/efectos de los fármacos , Linfocitos/citología , Linfocitos/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Mieloides/citología , Células Mieloides/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA