Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38560781

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4  FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.


Asunto(s)
Alelos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Regulación Fúngica de la Expresión Génica , Fenotipo
2.
mSphere ; 8(5): e0028423, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37732804

RESUMEN

Signaling modules, such as mitogen-activated protein kinase (MAPK) pathways, are evolutionarily conserved drivers of cell differentiation and stress responses. In many fungal species including pathogens, MAPK pathways control filamentous growth, where cells differentiate into an elongated cell type. The convenient model budding yeast Saccharomyces cerevisiae undergoes filamentous growth by the filamentous growth (fMAPK) pathway; however, the inducers of the pathway remain unclear, perhaps because pathway activity has been mainly studied in laboratory conditions. To address this knowledge gap, an ecological framework was used, which uncovered new fMAPK pathway inducers, including pectin, a material found in plants, and the metabolic byproduct ethanol. We also show that induction by a known inducer of the pathway, the non-preferred carbon source galactose, required galactose metabolism and induced the pathway differently than glucose limitation or other non-preferred carbon sources. By exploring fMAPK pathway function in fruit, we found that induction of the pathway led to visible digestion of fruit rind through a known target, PGU1, which encodes a pectolytic enzyme. Combinations of inducers (galactose and ethanol) stimulated the pathway to near-maximal levels, which showed dispensability of several fMAPK pathway components (e.g., mucin sensor, p21-activated kinase), but not others (e.g., adaptor, MAPKKK) and required the Ras2-protein kinase A pathway. This included a difference between the transcription factor binding partners for the pathway, as Tec1p, but not Ste12p, was partly dispensable for fMAPK pathway activity. Thus, by exploring ecologically relevant stimuli, new modes of MAPK pathway signaling were uncovered, perhaps revealing how a pathway can respond differently to specific environments. IMPORTANCE Filamentous growth is a cell differentiation response and important aspect of fungal biology. In plant and animal fungal pathogens, filamentous growth contributes to virulence. One signaling pathway that regulates filamentous growth is an evolutionarily conserved MAPK pathway. The yeast Saccharomyces cerevisiae is a convenient model to study MAPK-dependent regulation of filamentous growth, although the inducers of the pathway are not clear. Here, we exposed yeast cells to ecologically relevant compounds (e.g., plant compounds), which identified new inducers of the MAPK pathway. In combination, the inducers activated the pathway to near-maximal levels but did not cause detrimental phenotypes associated with previously identified hyperactive alleles. This context allowed us to identify conditional bypass for multiple pathway components. Thus, near-maximal induction of a MAPK pathway by ecologically relevant inducers provides a powerful tool to assess cellular signaling during a fungal differentiation response.


Asunto(s)
Galactosa , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Etanol/farmacología , Carbono/metabolismo
3.
J Biol Chem ; 299(11): 105297, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774975

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular behaviors, including the response to stress and cell differentiation, and are highly conserved across eukaryotes. MAPK pathways can be activated by the interaction between the small GTPase Cdc42p and the p21-activated kinase (Ste20p in yeast). By studying MAPK pathway regulation in yeast, we recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is regulated in a similar manner and is turned over by the 26S proteasome. This turnover did not occur when Ste20p was bound to Cdc42p, which presumably stabilized the protein to sustain MAPK pathway signaling. Although Ste20p is a major component of the fMAPK pathway, genetic approaches here identified a Ste20p-independent branch of signaling. Ste20p-independent signaling partially required the fMAPK pathway scaffold and Cdc42p-interacting protein, Bem4p, while Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p. Interestingly, Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p, Rga1p, which unexpectedly dampened basal but not active fMAPK pathway activity. These new regulatory features of the Rho GTPase and p21-activated kinase module may extend to related pathways in other systems.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae , Quinasas p21 Activadas , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estabilidad Proteica
4.
Elife ; 122023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37266577

RESUMEN

Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in dcp2Δ cells that appears to result directly from impaired decapping rather than elevated transcription. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Edc3, or Scd6; whereas most of the remaining transcripts utilize nonsense-mediated mRNA decay factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed that dcp2Δ confers widespread changes in relative translational efficiencies (TEs) that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased by dcp2Δ, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs in dcp2Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are upregulated, and both mitochondrial function and cell filamentation are elevated in dcp2Δ cells, suggesting that decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estabilidad del ARN/genética , Degradación de ARNm Mediada por Codón sin Sentido , Nutrientes , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo
5.
Mol Cell Biol ; 43(5): 200-222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114947

RESUMEN

Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.


Asunto(s)
Polaridad Celular , Proteínas de Saccharomyces cerevisiae , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae , Humanos , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Polaridad Celular/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
6.
bioRxiv ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909494

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular responses, including the response to stress and cell differentiation, and are highly conserved across eukaryotes from yeast to humans. In yeast, the canonical activation of several MAPK pathways includes the interaction of the small GTPase Cdc42p with the p21-activated kinase (PAK) Ste20p. We recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is turned over by the 26S proteasome. Ste20p was stabilized when bound to Cdc42p, presumably to sustain MAPK pathway signaling. Ste20p is a major conduit by which signals flow through the fMAPK pathway; however, by genetic approaches we also identified a Ste20p-independent branch of the fMAPK pathway. Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p, while Ste20p-independent signaling required the fMAPK pathway adaptor and Cdc42p-interacting protein, Bem4p. Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p in the fMAPK pathway, Rga1p, which also dampened basal but not active fMAPK pathway activity. Finally, the polarity adaptor and Cdc42p-interacting protein, Bem1p, which also regulates the fMAPK pathway, interacts with the tetra-span protein Sho1p, connecting a sensor at the plasma membrane to a protein that regulates the GTPase module. Collectively, these data reveal new regulatory features surrounding a Rho-PAK module that may extend to other pathways that control cell differentiation.

7.
bioRxiv ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36711592

RESUMEN

Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in dcp2 Δ cells that appears to result directly from impaired decapping rather than elevated transcription, which was confirmed by ChIP-Seq analysis of RNA Polymerase II occupancies genome-wide. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Lsm2, Edc3 or Scd6; whereas most of the remaining transcripts utilize NMD factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed that dcp2 Δ confers widespread changes in relative TEs that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased by dcp2 Δ, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs in dcp2 Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are derepressed, and both mitochondrial function and cell filamentation (a strategy for nutrient foraging) are elevated by dcp2 Δ, suggesting that mRNA decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.

8.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187743

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK-pathway dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay, and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and RGA1, which encodes a GTPase activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1 and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, presumably identifying an inhibitory domain in the C-terminus of the protein. We also show that a wide variety of filamentous growth phenotypes result from mutations in different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.

9.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36350310

RESUMEN

Rho GTPases are central regulators of cell polarity and signaling. How Rho GTPases are directed to function in certain settings remains unclear. Here, we show the protein levels of the yeast Rho GTPase Cdc42p are regulated, which impacts a subset of its biological functions. Specifically, the active conformation of Cdc42p was ubiquitinated by the NEDD4 ubiquitin ligase Rsp5p and HSP40/HSP70 chaperones and turned over in the proteasome. A GTP-locked (Q61L) turnover-defective (TD) version, Cdc42pQ61L+TD, hyperactivated the MAPK pathway that regulates filamentous growth (fMAPK). Cdc42pQ61L+TD did not influence the activity of the mating pathway, which shares components with the fMAPK pathway. The fMAPK pathway adaptor, Bem4p, stabilized Cdc42p levels, which resulted in elevated fMAPK pathway signaling. Our results identify Cdc42p turnover regulation as being critical for the regulation of a MAPK pathway. The control of Rho GTPase levels by stabilization and turnover may be a general feature of signaling pathway regulation, which can result in the execution of a specific developmental program.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistema de Señalización de MAP Quinasas
10.
PLoS Genet ; 18(1): e1009988, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982769

RESUMEN

Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.


Asunto(s)
Redes Reguladoras de Genes , Saccharomyces cerevisiae/crecimiento & desarrollo , Adaptación Fisiológica , Regulación Fúngica de la Expresión Génica , Interacción Gen-Ambiente , Fenotipo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
12.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347092

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways control cell differentiation and the response to stress. In Saccharomyces cerevisiae, the MAPK pathway that controls filamentous growth (fMAPK) shares components with the pathway that regulates the response to osmotic stress (HOG). Here, we show that the two pathways exhibit different patterns of activity throughout the cell cycle. The different patterns resulted from different expression profiles of genes encoding mucin sensors that regulate the pathways. Cross-pathway regulation from the fMAPK pathway stimulated the HOG pathway, presumably to modulate fMAPK pathway activity. We also show that the shared tetraspan protein Sho1p, which has a dynamic localization pattern throughout the cell cycle, induced the fMAPK pathway at the mother-bud neck. A Sho1p-interacting protein, Hof1p, which also localizes to the mother-bud neck and regulates cytokinesis, also regulated the fMAPK pathway. Therefore, spatial and temporal regulation of pathway sensors, and cross-pathway regulation, control a MAPK pathway that regulates cell differentiation in yeast.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diferenciación Celular , Retroalimentación , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Antioxidants (Basel) ; 10(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671669

RESUMEN

Reactive oxygen species (ROS) that exceed the antioxidative capacity of the cell can be harmful and are termed oxidative stress. Increasing evidence suggests that ROS are not exclusively detrimental, but can fulfill important signaling functions. Recently, we have been able to demonstrate that a NADPH oxidase-like enzyme (termed Yno1p) exists in the single-celled organism Saccharomyces cerevisiae. This enzyme resides in the peripheral and perinuclear endoplasmic reticulum and functions in close proximity to the plasma membrane. Its product, hydrogen peroxide, which is also produced by the action of the superoxide dismutase, Sod1p, influences signaling of key regulatory proteins Ras2p and Yck1p/2p. In the present work, we demonstrate that Yno1p-derived H2O2 regulates outputs controlled by three MAP kinase pathways that can share components: the filamentous growth (filamentous growth MAPK (fMAPK)), pheromone response, and osmotic stress response (hyperosmolarity glycerol response, HOG) pathways. A key structural component and regulator in this process is the actin cytoskeleton. The nucleation and stabilization of actin are regulated by Yno1p. Cells lacking YNO1 showed reduced invasive growth, which could be reversed by stimulation of actin nucleation. Additionally, under osmotic stress, the vacuoles of a ∆yno1 strain show an enhanced fragmentation. During pheromone response induced by the addition of alpha-factor, Yno1p is responsible for a burst of ROS. Collectively, these results broaden the roles of ROS to encompass microbial differentiation responses and stress responses controlled by MAPK pathways.

14.
Sci Rep ; 10(1): 22184, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335117

RESUMEN

MAPK pathways regulate different responses yet can share common components. Although core regulators of MAPK pathways are well known, new pathway regulators continue to be identified. Overexpression screens can uncover new roles for genes in biological processes and are well suited to identify essential genes that cannot be evaluated by gene deletion analysis. In this study, a genome-wide screen was performed to identify genes that, when overexpressed, induce a reporter (FUS1-HIS3) that responds to ERK-type pathways (Mating and filamentous growth or fMAPK) but not p38-type pathways (HOG) in yeast. Approximately 4500 plasmids overexpressing individual yeast genes were introduced into strains containing the reporter by high-throughput transformation. Candidate genes were identified by measuring growth as a readout of reporter activity. Fourteen genes were identified and validated by re-testing: two were metabolic controls (HIS3, ATR1), five had established roles in regulating ERK-type pathways (STE4, STE7, BMH1, BMH2, MIG2) and seven represent potentially new regulators of MAPK signaling (RRN6, CIN5, MRS6, KAR2, TFA1, RSC3, RGT2). MRS6 encodes a Rab escort protein and effector of the TOR pathway that plays a role in nutrient signaling. MRS6 overexpression stimulated invasive growth and phosphorylation of the ERK-type fMAPK, Kss1. Overexpression of MRS6 reduced the osmotolerance of cells and phosphorylation of the p38/HOG MAPK, Hog1. Mrs6 interacted with the PAK kinase Ste20 and MAPKK Ste7 by two-hybrid analysis. Based on these results, Mrs6 may selectively propagate an ERK-dependent signal. Identifying new regulators of MAPK pathways may provide new insights into signal integration among core cellular processes and the execution of pathway-specific responses.


Asunto(s)
Activadores de GTP Fosfohidrolasa/metabolismo , Sistema de Señalización de MAP Quinasas , Levaduras/fisiología , Proteínas Portadoras , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Estudio de Asociación del Genoma Completo , Genómica/métodos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Unión Proteica , Levaduras/citología
15.
Inorg Chem ; 59(22): 16531-16544, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33138368

RESUMEN

Four high-spin macrocyclic Co(II) complexes with hydroxypropyl or amide pendants and appended coumarin or carbostyril fluorophores were prepared as CEST (chemical exchange saturation transfer) MRI probes. The complexes were studied in solution as paramagnetic CEST (paraCEST) agents and after loading into Saccharomyces cerevisiae yeast cells as cell-based CEST (cellCEST) agents. The fluorophores attached to the complexes through an amide linkage imparted an unusual pH dependence to the paraCEST properties of all four complexes through of ionization of a group that was attributed to the amide NH linker. The furthest shifted CEST peak for the hydroxypropyl-based complexes changed by ∼90 ppm upon increasing the pH from 5 to 7.5. At acidic pH, the Co(II) complexes exhibited three to four CEST peaks with the most highly shifted CEST peak at 200 ppm. The complexes demonstrated substantial paramagnetic water proton shifts which is a requirement for the development of cellCEST agents. The large shift in the proton resonance was attributed to an inner-sphere water at neutral pH, as shown by variable temperature 17O NMR spectroscopy studies. Labeling of yeast with one of these paraCEST agents was optimized with fluorescence microscopy and validated by using ICP mass spectrometry quantitation of cobalt. A weak asymmetry in the Z-spectra was observed in the yeast labeled with a Co(II) complex, toward a cellCEST effect, although the Co(II) complexes were toxic to the cells at the concentrations necessary for observation of cellCEST.


Asunto(s)
Cobalto/química , Medios de Contraste/química , Complejos de Coordinación/química , Colorantes Fluorescentes/química , Compuestos Macrocíclicos/química , Saccharomyces cerevisiae/química , Medios de Contraste/síntesis química , Complejos de Coordinación/síntesis química , Colorantes Fluorescentes/síntesis química , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética , Estructura Molecular , Saccharomyces cerevisiae/citología
16.
G3 (Bethesda) ; 10(12): 4637-4648, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33093184

RESUMEN

A yeast deletion mutation in the nuclear-encoded gene, AFO1, which codes for a mitochondrial ribosomal protein, led to slow growth on glucose, the inability to grow on glycerol or ethanol, and loss of mitochondrial DNA and respiration. We noticed that afo1- yeast readily obtains secondary mutations that suppress aspects of this phenotype, including its growth defect. We characterized and identified a dominant missense suppressor mutation in the ATP3 gene. Comparing isogenic slowly growing rho-zero and rapidly growing suppressed afo1- strains under carefully controlled fermentation conditions showed that energy charge was not significantly different between strains and was not causal for the observed growth properties. Surprisingly, in a wild-type background, the dominant suppressor allele of ATP3 still allowed respiratory growth but increased the petite frequency. Similarly, a slow-growing respiratory deficient afo1- strain displayed an about twofold increase in spontaneous frequency of point mutations (comparable to the rho-zero strain) while the suppressed strain showed mutation frequency comparable to the respiratory-competent WT strain. We conclude, that phenotypes that result from afo1- are mostly explained by rapidly emerging mutations that compensate for the slow growth that typically follows respiratory deficiency.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN Mitocondrial/genética , Mutación , Tasa de Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Genetics ; 216(1): 95-116, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32665277

RESUMEN

MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.


Asunto(s)
División Celular/genética , Sistema de Señalización de MAP Quinasas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
mSphere ; 5(4)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641426

RESUMEN

Candida albicans is an opportunistic, dimorphic fungus that causes candidiasis in immunocompromised people. C. albicans forms specialized structures called microcolonies that are important for surface adhesion and virulence. Microcolonies form in response to specific environmental conditions and require glycolytic substrates for optimal growth. However, fungal signaling pathways involved in sensing and transmitting these environmental cues to induce microcolony formation have not been identified. Here, we show that the C. albicans Ras1-cAMP cascade is required for microcolony formation, while the Cek1-MAP kinase pathway is not required, and Hog1 represses microcolony formation. The membrane protein Sho1, known to regulate the Cek1 pathway in yeasts, was indispensable for C. albicans microcolony formation but regulated the Ras1-cAMP pathway instead, based upon diminished intracellular levels of cAMP and reduced expression of core microcolony genes, including HWP1, PGA10, and ECE1, in C. albicanssho1Δ cells. Based upon predicted physical interactions between Sho1 and the glycolytic enzymes Pfk1, Fba1, Pgk1, and Cdc19, we hypothesized that Sho1 regulates Ras1-cAMP by establishing cellular energy levels produced by glycolysis. Indeed, microcolony formation was restored in C. albicanssho1Δ cells by addition of exogenous intermediates of glycolysis, including downstream products of each predicted interacting enzyme (fructose 1,6 bisphosphate, glyceraldehyde phosphate, 3-phosphoglyceric acid, and pyruvate). Thus, C. albicans Sho1 is an upstream regulator of the Ras1-cAMP signaling pathway that connects glycolytic metabolism to the formation of pathogenic microcolonies.IMPORTANCEC. albicans microcolonies form extensive hyphal structures that enhance surface adherence and penetrate underlying tissues to promote fungal infections. This study examined the environmental conditions that promote microcolony formation and how these signals are relayed, in order to disrupt signaling and reduce pathogenesis. We found that a membrane-localized protein, Sho1, is an upstream regulator of glycolysis and required for Ras1-cAMP signaling. Sho1 controlled the Ras1-dependent expression of core microcolony genes involved in adhesion and virulence. This new regulatory function for Sho1 linking glycolysis to microcolony formation reveals a novel role for this fungal membrane protein.


Asunto(s)
Candida albicans/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Glucólisis , Proteínas de la Membrana/genética , Transducción de Señal/genética , Candida albicans/metabolismo , Candida albicans/patogenicidad , Candidiasis/microbiología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Virulencia
19.
ChemMedChem ; 15(12): 1050-1057, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32168421

RESUMEN

Yeast-derived ß-glucan particles (GPs) are a class of microcarriers under development for the delivery of drugs and imaging agents to immune-system cells for theranostic approaches. However, the encapsulation of hydrophilic imaging agents in the porous GPs is challenging. Here, we show that the unique coordination chemistry of FeIII -based macrocyclic T1 MRI contrast agents permits facile encapsulation in GPs. Remarkably, GPs labeled with the simple FeIII complexes are stable under physiologically relevant conditions, despite the absence of amphiphilic groups. In contrast to the free FeIII coordination complex, the labeled FeIII -GPs have lowered T1 relaxivity and act as a silenced form of the contrast agent. Addition of a fluorescent tag to the FeIII complex produces a bimodal agent to further enable tracking of the nanoparticles and to monitor release. Treatment of the iron-labeled GPs with a maltol chelator or with mildly acidic conditions releases the intact iron complex and restores enhanced T1 relaxation of the water protons.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Portadores de Fármacos/química , Glucanos/química , Hierro/química , Quelantes/química , Compuestos de Dansilo/química , Colorantes Fluorescentes/química , Imagen por Resonancia Magnética , Microscopía Confocal , Microscopía Fluorescente , Pironas/química , Rodaminas/química , Saccharomyces cerevisiae/química
20.
J Cell Sci ; 133(7)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32079658

RESUMEN

All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in the yeast Saccharomyces cerevisiae, which is controlled by the Rho GTPase Cdc42p. The prevailing view of bud emergence does not account for regulation by extrinsic cues. Here, we show that the filamentous growth mitogen activated protein kinase (fMAPK) pathway regulates bud emergence under nutrient-limiting conditions. The fMAPK pathway regulated the expression of polarity targets including the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and active during the period of the cell cycle leading up to bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diferenciación Celular , Polaridad Celular/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...