Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS One ; 17(8): e0273198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35981051

RESUMEN

The ribosomal protein uL11 is located at the basis of the ribosome P-stalk and plays a paramount role in translational efficiency. In addition, no mutant for uL11 is available suggesting that this gene is haplo-insufficient as many other Ribosomal Protein Genes (RPGs). We have previously shown that overexpression of Drosophila melanogaster uL11 enhances the transcription of many RPGs and Ribosomal Biogenesis genes (RiBis) suggesting that uL11 might globally regulate the level of translation through its transcriptional activity. Moreover, uL11 trimethylated on lysine 3 (uL11K3me3) interacts with the chromodomain of the Enhancer of Polycomb and Trithorax Corto, and both proteins co-localize with RNA Polymerase II at many sites on polytene chromosomes. These data have led to the hypothesis that the N-terminal end of uL11, and more particularly the trimethylation of lysine 3, supports the extra-ribosomal activity of uL11 in transcription. To address this question, we mutated the lysine 3 codon using a CRISPR/Cas9 strategy and obtained several lysine 3 mutants. We describe here the first mutants of D. melanogaster uL11. Unexpectedly, the uL11K3A mutant, in which the lysine 3 codon is replaced by an alanine, displays a genuine Minute phenotype known to be characteristic of RPG deletions (longer development, low fertility, high lethality, thin and short bristles) whereas the uL11K3Y mutant, in which the lysine 3 codon is replaced by a tyrosine, is unaffected. In agreement, the rate of translation decreases in uL11K3A but not in uL11K3Y. Co-immunoprecipitation experiments show that the interaction between uL11 and the Corto chromodomain is impaired by both mutations. However, Histone Association Assays indicate that the mutant proteins still bind chromatin. RNA-seq analyses from wing imaginal discs show that Corto represses RPG expression whereas very few genes are deregulated in uL11 mutants. We propose that Corto, by repressing RPG expression, ensures that all ribosomal proteins are present at the correct stoichiometry, and that uL11 fine-tunes its transcriptional regulation of RPGs.


Asunto(s)
Proteínas de Drosophila , Lisina , Proteínas Ribosómicas , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lisina/genética , Lisina/metabolismo , Mutación , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Activación Transcripcional/genética
3.
Dev Cell ; 50(6): 780-792.e7, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31447264

RESUMEN

Size trade-offs of visual versus olfactory organs is a pervasive feature of animal evolution. This could result from genetic or functional constraints. We demonstrate that head sensory organ size trade-offs in Drosophila are genetically encoded and arise through differential subdivision of the head primordium into visual versus non-visual fields. We discover that changes in the temporal regulation of the highly conserved eyeless/Pax6 gene expression during development is a conserved mechanism for sensory trade-offs within and between Drosophila species. We identify a natural single nucleotide polymorphism in the cis-regulatory region of eyeless in a binding site of its repressor Cut that is sufficient to alter its temporal regulation and eye size. Because eyeless/Pax6 is a conserved regulator of head sensory placode subdivision, we propose that its temporal regulation is key to define the relative size of head sensory organs.


Asunto(s)
Evolución Biológica , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Órganos de los Sentidos/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Elementos de Facilitación Genéticos/genética , Ojo/anatomía & histología , Ojo/metabolismo , Femenino , Geografía , Cabeza , Nucleótidos/genética , Tamaño de los Órganos/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Tiempo
4.
PLoS Genet ; 14(7): e1007498, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995890

RESUMEN

In Drosophila, ubiquitous expression of a short Cyclin G isoform generates extreme developmental noise estimated by fluctuating asymmetry (FA), providing a model to tackle developmental stability. This transcriptional cyclin interacts with chromatin regulators of the Enhancer of Trithorax and Polycomb (ETP) and Polycomb families. This led us to investigate the importance of these interactions in developmental stability. Deregulation of Cyclin G highlights an organ intrinsic control of developmental noise, linked to the ETP-interacting domain, and enhanced by mutations in genes encoding members of the Polycomb Repressive complexes PRC1 and PR-DUB. Deep-sequencing of wing imaginal discs deregulating CycG reveals that high developmental noise correlates with up-regulation of genes involved in translation and down-regulation of genes involved in energy production. Most Cyclin G direct transcriptional targets are also direct targets of PRC1 and RNAPolII in the developing wing. Altogether, our results suggest that Cyclin G, PRC1 and PR-DUB cooperate for developmental stability.


Asunto(s)
Ciclina G/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Complejo Represivo Polycomb 1/metabolismo , Animales , Animales Modificados Genéticamente , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Ciclina G/genética , Regulación hacia Abajo , Proteínas de Drosophila/genética , Femenino , Redes Reguladoras de Genes/fisiología , Masculino , Complejo Represivo Polycomb 1/genética , Unión Proteica/genética , Regulación hacia Arriba , Alas de Animales/embriología
5.
Artículo en Inglés | MEDLINE | ID: mdl-25995770

RESUMEN

BACKGROUND: Cyclins and cyclin-dependent kinases (CDKs) are essential for cell cycle regulation and are functionally associated with proteins involved in epigenetic maintenance of transcriptional patterns in various developmental or cellular contexts. Epigenetic maintenance of transcription patterns, notably of Hox genes, requires the conserved Polycomb-group (PcG), Trithorax-group (TrxG), and Enhancer of Trithorax and Polycomb (ETP) proteins, particularly well studied in Drosophila. These proteins form large multimeric complexes that bind chromatin and appose or recognize histone post-translational modifications. PcG genes act as repressors, counteracted by trxG genes that maintain gene activation, while ETPs interact with both, behaving alternatively as repressors or activators. Drosophila Cyclin G negatively regulates cell growth and cell cycle progression, binds and co-localizes with the ETP Corto on chromatin, and participates with Corto in Abdominal-B Hox gene regulation. Here, we address further implications of Cyclin G in epigenetic maintenance of gene expression. RESULTS: We show that Cyclin G physically interacts and extensively co-localizes on chromatin with the conserved ETP Additional sex combs (ASX), belonging to the repressive PR-DUB complex that participates in H2A deubiquitination and Hox gene silencing. Furthermore, Cyclin G mainly co-localizes with RNA polymerase II phosphorylated on serine 2 that is specific to productive transcription. CycG interacts with Asx, PcG, and trxG genes in Hox gene maintenance, and behaves as a PcG gene. These interactions correlate with modified ectopic Hox protein domains in imaginal discs, consistent with a role for Cyclin G in PcG-mediated Hox gene repression. CONCLUSIONS: We show here that Drosophila CycG is a Polycomb-group gene enhancer, acting in epigenetic maintenance of the Hox genes Sex combs reduced (Scr) and Ultrabithorax (Ubx). However, our data suggest that Cyclin G acts alternatively as a transcriptional activator or repressor depending on the developmental stage, the tissue or the target gene. Interestingly, since Cyclin G interacts with several CDKs, Cyclin G binding to the ETPs ASX or Corto suggests that their activity could depend on Cyclin G-mediated phosphorylation. We discuss whether Cyclin G fine-tunes transcription by controlling H2A ubiquitination and transcriptional elongation via interaction with the ASX subunit of PR-DUB.

6.
J Immunol ; 192(11): 4957-66, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24778449

RESUMEN

Peptide ligands presented by MHC class I (MHC-I) molecules are produced by degradation of cytosolic and nuclear, but also endoplasmic reticulum (ER)-resident, proteins by the proteasome. However, Ag processing of ER proteins remains little characterized. Studying processing and presentation of proinsulin, which plays a pivotal role in autoimmune diabetes, we found that targeting to the ER has profound effects not only on how proinsulin is degraded, but also on regulation of its cellular levels. While proteasome inhibition inhibited degradation and presentation of cytosolic proinsulin, as expected, it reduced the abundance of ER-targeted proinsulin. This targeting and protein modifications modifying protein half-life also had profound effects on MHC-I presentation and proteolytic processing of proinsulin. Thus, presentation of stable luminal forms was inefficient but enhanced by proteasome inhibition, whereas that of unstable luminal forms and of a cytosolic form were more efficient and compromised by proteasome inhibitors. Distinct stability of peptide MHC complexes produced from cytosolic and luminal proinsulin suggests that different proteolytic activities process the two Ag forms. Thus, both structural features and subcellular targeting of Ags can have strong effects on the processing pathways engaged by MHC-I-restricted Ags, and on the efficiency and regulation of their presentation.


Asunto(s)
Presentación de Antígeno , Retículo Endoplásmico/inmunología , Regulación de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Proinsulina/inmunología , Proteolisis , Retículo Endoplásmico/genética , Regulación de la Expresión Génica/genética , Células HeLa , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos/genética , Péptidos/inmunología , Proinsulina/genética
7.
PLoS One ; 7(11): e49958, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185495

RESUMEN

The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8-10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Drosophila , Proteínas Nucleares , Nicho de Células Madre/genética , Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Dosificación de Gen/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Germinativas/crecimiento & desarrollo , Homeostasis/genética , Homeostasis/fisiología , Morfogénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ovario/citología , Ovario/crecimiento & desarrollo , Nicho de Células Madre/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cell Cycle ; 10(5): 805-18, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21311225

RESUMEN

Mammalian Cyclins G1 and G2 are unconventional cyclins whose role in regulating the cell cycle is ambiguous. Cyclin G1 promotes G2/M cell cycle arrest in response to DNA damage whereas ectopic expression of CCNG2, that encodes Cyclin G2, induces G1/S cell cycle arrest. The only Drosophila Cyclin G was previously shown to be a transcriptional regulator that interacts with the chromatin factor Corto and controls expression of the homeotic gene Abdominal B. It is very close to mammalian Cyclin G1 and G2 except in its N-terminal region, that interacts with Corto, and that seems to have been acquired in dipterans. Ubiquitous misregulation of Cyclin G (CycG) using transgenic lines lengthens development and induces phenotypes suggesting growth or proliferation defects. Using tissue-specific misregulation of CycG and FACS, we show that overproduction of Cyclin G produces small cells whereas shortage produces large cells, suggesting that Cyclin G negatively regulates cell growth. Furthermore, overexpression of CycG lengthens the cell cycle, with a prominent effect on G1 and S phases. Genetic interactions with Cyclin E suggest that Cyclin G prevents G1 to S transition and delays S phase progression. Control of cell growth and cell cycle by Cyclin G might be achieved via interaction with a network of partners, notably the cyclin-dependent kinases CDK4 and CDK2.


Asunto(s)
Ciclina G/metabolismo , Drosophila melanogaster/metabolismo , Secuencia de Aminoácidos , Animales , Proliferación Celular , Tamaño de la Célula , Ciclina G/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Femenino , Fase G1 , Masculino , Datos de Secuencia Molecular , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Fase S , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...