Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Total Environ ; 929: 172323, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608906

RESUMEN

Mycotoxins are secondary metabolites produced by fungi and identified as contaminants in animal feed. They have potentially harmful effects, including carcinogenicity, mutagenicity, and repro-toxicity in animals and humans. As a result of climate change, there is the potential for a change in the prevalence and concentration of mycotoxins in animal feed components. This necessitates an assessment of the present and emerging threats to the food supply chain from mycotoxins. This systematic review and meta-analysis study synthesised studies on mycotoxin contamination and prevalence in cattle feed components. The studies were collected from scientific databases Web of Knowledge, Scopus, and Embase between 2011 and 2022. The meta-analysis synthesised 97 studies on the prevalence and the concentration of aflatoxins, ochratoxin A, deoxynivalenol, zearalenone, fumonisin and T-2/HT-2 toxins in feed components. Aflatoxin was highly prevalent (59 %), with a concentration of 2.58-3.92 µg kg-1 in feed components. Ochratoxin A had a global prevalence of 31 % with a concentration of 5.56-12.41 µg kg-1. Deoxynivalenol had a global concentration of 233.17-327.73 µg kg-1 and a prevalence of 74 %. Zearalenone had a prevalence of 70 % and a concentration of 42.47-66.19 µg kg-1. The concentration and prevalence of fumonisins was 232.19-393.07 µg kg-1 and 65 %, respectively. The prevalence and concentration of T-2/HT-2 toxins were 45 % and 23.54-35.12 µg kg-1, respectively. The synthesised concentration of the mycotoxins in the overall feed components was lower than the regulated and guidance values set by the European Union. However, in a few cases, the 95th percentile exceeded these concentration values due to high levels of uncertainty attributed to lower sample size, and thus, need to be considered while conducting risk assessments. The study highlights climates and regions likely to be conducive to the emergence of mycotoxin risk, especially considering the potential influences of climate change.


Asunto(s)
Alimentación Animal , Contaminación de Alimentos , Micotoxinas , Alimentación Animal/análisis , Micotoxinas/análisis , Animales , Contaminación de Alimentos/análisis , Bovinos , Aflatoxinas/análisis
2.
Environ Res ; 245: 117979, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142727

RESUMEN

Mycotoxins are toxic fungal metabolites that may occur in crops. Mycotoxins may carry-over into bovine milk if bovines ingest mycotoxin-contaminated feed. Due to climate change, there may be a potential increase in the prevalence and concentration of mycotoxins in crops. However, the toxicity to humans and the carry-over rate of mycotoxins from feed to milk from bovines varies considerably. This research aimed to rank emerging and existing mycotoxins under different climate change scenarios based on their occurrence in milk and their toxicity to humans. The quantitative risk ranking took a probabilistic approach, using Monte-Carlo simulation to take account of input uncertainties and variabilities. Mycotoxins were ranked based on their hazard quotient, calculated using estimated daily intake and tolerable daily intake values. Four climate change scenarios were assessed, including an Irish baseline model in addition to best-case, worst-case, and most likely scenarios, corresponding to equivalent Intergovernmental Panel on Climate Change (IPCC) scenarios. This research prioritised aflatoxin B1, zearalenone, and T-2 and HT-2 toxin as potential human health hazards for adults and children compared to other mycotoxins under all scenarios. Relatively lower risks were found to be associated with mycophenolic acid, enniatins, and deoxynivalenol. Overall, the carry-over rate of mycotoxins, the milk consumption, and the concentration of mycotoxins in silage, maize, and wheat were found to be the most sensitive parameters (positively correlated) of this probabilistic model. Though climate change may impact mycotoxin prevalence and concentration in crops, the carry-over rate notably affects the final concentration of mycotoxin in milk to a greater extent. The results obtained in this study facilitate the identification of risk reduction measures to limit mycotoxin contamination of dairy products, considering potential climate change influences.


Asunto(s)
Micotoxinas , Niño , Humanos , Animales , Micotoxinas/toxicidad , Micotoxinas/análisis , Leche/química , Cambio Climático , Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Productos Agrícolas
3.
Environ Pollut ; 337: 122582, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739257

RESUMEN

Evidence suggests that oral exposure to bisphenol A (BPA) may result in adverse metabolic and neurobehavioral effects. The aim of the present meta-analysis is to examine this association based on systematically selected laboratory rodent studies published from 2012 to 2021 and sourced from Scopus, Web of Science, EmBase, and PubMed. Articles satisfying eligibility and inclusion criteria were included for the calculation of the summary standardised mean difference (SMD). Subgroup analysis and subsequent dose-response analysis were conducted if applicable. In total, 32 studies were analysed for 6 metabolic endpoints (cholesterol, triglycerides, insulin, glucose, leptin, and adiponectin) and 6 neurobehavioral endpoints (locomotor activity, exploratory, anxiety, depression, spatial learning and memory, non-spatial learning and memory). Summary SMDs implied that no significant effects were observed in endpoints considered. The dose was not determined as a significant moderator with regards to medium or high heterogeneity; however, there was significant impairment of spatial learning and memory at health-based guidance value ('HBGV') (0.05-9 mg (kg bw)-1 day-1) and 'High' (>9 mg (kg bw)-1 day-1) dose group. As a result, an indicative toxicological reference dose value of 0.034 mg (kg bw)-1 day-1 was proposed due to large variability. Potential harm to spatial learning and memory from BPA exposure requires further investigation. This study has provided some additional information on potential adverse metabolic and neurobehavioral effects of BPA from the perspective of meta-analysis which can inform the public, regulatory authorities, and policymakers.


Asunto(s)
Ansiedad , Fenoles , Fenoles/toxicidad , Fenoles/análisis , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/análisis , Insulina
4.
Environ Int ; 179: 108149, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37634297

RESUMEN

The urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) has recently attracted a lot of attention attributing to its efficiency in reducing ammonia loss from urea fertiliser applied to temperate grassland soils. Ammonia gas lost to the environment causes soil acidification, eutrophication and contributes to global warming through increased greenhouse gas emissions and ozone layer depletion. The active chemical NBPT blocks the soil microbial enzyme (urease) and reduces ammonia emission. Furthermore, NBPT's use in agriculture might benefit farmers by reducing reliance on expensive nitrate fertiliser and aiding in a shift to more urea-based fertiliser (using NBPT co-applied with urea is more cost-effective). The present study was carried out to characterise the potential transfer of NBPT from grass to liquid milk and compute the associated human health risks. Using probabilistic risk assessment techniques, an exposure assessment model was developed to calculate the Estimated Daily Intake (EDI) of NBPT from milk, following co-application of NBPT with a urea N-fertiliser. Results show that the predicted mean concentration of NBPT in milk is 2.5 × 10-8 mg NBPT/kg milk, while the mean daily intake (EDI) of NBPT is 5 × 10-11 mg NBPT /kg BW/day). Back-calculations revealed that, under the studied conditions, for the EDI to exceed ADI of 3 × 10-2 mg NBPT/kg BW/ day, the NBPT application rate would need to exceed the NBPT fertiliser limit (0.09-0.2% by mass of urea nitrogen) set in the Commission Regulation (EC) No 1107/2008, and the bio-transfer factor would need to be over 100% (implausible). Sensitivity analysis revealed soil pH (SPH), phytoaccumulation factor (PF), NBPT permissible levels in fertiliser (NBPT%), pasture cover (P), and grazing rotation length (t) as critical factors influencing the EDI of NBPT. The present study concludes that NBPT presents negligible risk to human health under the conditions and assumptions studied.


Asunto(s)
Amoníaco , Ureasa , Humanos , Fertilizantes , Agricultura , Eutrofización
5.
Environ Sci Pollut Res Int ; 30(36): 85482-85493, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37389750

RESUMEN

Grass uptake and phytoaccumulation factors of N-(n-butyl) thiophosphoric triamide (NBPT) and dicyandiamide (DCD) were quantified. Following the application of urea fertilizer treated with the inhibitors in Irish grassland, grass samples were collected at 5, 10, 15, 20, and 30 day time intervals following five application cycles. Uptake of NBPT by grass was below the limit of quantitation of the analytical method (0.010 mg NBPT kg-1). Dicyandiamide concentrations in grass ranged from 0.004 to 28 mg kg-1 with the highest concentrations measured on days 5 and 10. A reducing trend in concentration was found after day 15. The DCD phytoaccumulation factor was ranged from 0.004% to 1.1% showing that DCD can be taken up by grass at low levels when co-applied with granular urea. In contrast, NBPT was not detected indicating that grass uptake is unlikely when co-applied with granular urea fertilizer. The contrasting results are likely due to very different longevity of DCD and NBPT along with the much lower rate of NBPT, which is used compared with DCD.


Asunto(s)
Poaceae , Ureasa , Urea , Nitrificación , Fertilizantes/análisis , Inhibidores Enzimáticos/farmacología , Suelo , Nitrógeno
6.
Sci Total Environ ; 881: 163496, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37062312

RESUMEN

Bisphenol A (BPA) is a chemical with large-scale applications in the manufacturing of industrial products. Concerns have been raised regarding human exposure to BPA and dietary consumption is the main route of exposure. BPA is recognised as an endocrine disruptor with multiple adverse effects on the reproductive, immune, and nervous systems. This study aimed to conduct a probabilistic risk assessment to evaluate the human health risk based on the raw concentration data (N = 1266) of BPA in non-canned meat and meat products purchased from supermarkets and local butchers in Dublin and the surrounding area. The mean exposure levels for BPA in non-canned meat and meat products, fresh meat, and processed meat products among children were 0.019, 0.0022, and 0.015 µg (kg bw)-1 day-1, respectively. Therefore, simulated human exposures to BPA were far below the EFSA recommended current temporary tolerable daily intake (t-TDI) of 4 µg (kg bw)-1 day-1. However recently, the EFSA has proposed a draft TDI of 0.04 ng (kg bw)-1 day-1 to replace the current t-TDI. Hence, our results indicated potential health concerns as the estimated exposure levels (5th-95th percentile) were below current t-TDI but above draft TDIs. Further investigation into the source of BPA contamination in processed meat products is highly recommended. The research presented here will inform the public, meat producers and processors, and policymakers on potential exposure to BPA.


Asunto(s)
Productos de la Carne , Niño , Humanos , Carne/análisis , Dieta , Compuestos de Bencidrilo/análisis , Medición de Riesgo
7.
Food Chem Toxicol ; 172: 113574, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36566970

RESUMEN

Bisphenol A (BPA) is a widely used synthetic industrial compound frequently detected in food. Dietary exposure to BPA has been recognised as a potential health concern. However, there are uncertainties regarding BPA toxicity. The primary objective of this study was to summarise and analyse multiple toxicity endpoints of adverse reproductive effects caused by BPA exposure in rodent models. Therefore, a multilevel meta-analysis and subsequent dose-response analysis were conducted. Relevant articles published in English between 2012 and 2021 were collected from online databases, viz. Scopus, EmBase, Web of Science, and PubMed. In total, 41 studies were included for statistical analysis. All statistical analyses were performed using open-source RStudio packages. Summary effects indicated the statistical significance of BPA exposure on decreased sperm concentration (Hedges' g: -1.35) and motility (Hedges' g: -1.12) on average, while no significant effects were observed on the absolute and relative weight of male and female reproductive organs. The lowest mean toxicological reference dose values of 0.0011 mg (kg bw)-1 day-1 was proposed for BPA exposure on sperm concentration from the dose-response model. In conclusion, potential health risks from BPA exposure were shown with regards to reproductive toxicity, especially that sperm concentration and sperm motility require further attention.


Asunto(s)
Roedores , Motilidad Espermática , Animales , Masculino , Femenino , Semen , Reproducción , Compuestos de Bencidrilo/análisis
8.
Sci Total Environ ; 859(Pt 2): 160022, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368382

RESUMEN

Antibiotic resistance (AR) development in natural water bodies is a significant source of concern. Macrolide antibiotics in particular have been identified as pollutants of concern for AR development throughout the literature, as well as by state and international authorities. This study utilises a probabilistic model to examine the risk of AR development arising from human-use macrolide residues, utilising administration rates from Ireland as a case study. Stages modelled included level of administration, excretion, degradation in wastewater, removal in wastewater treatment, assuming conventional activated sludge (CAS) treatment, and dilution. Release estimates per day, as well as risk quotient values for antibiotic resistance development and ecological impact, are generated for erythromycin, clarithromycin, and azithromycin. In the modelled scenario in which conventional activated sludge treatment is utilised in wastewater treatment, this model ranks risk of resistance development for each antibiotic in the order clarithromycin > azithromycin > erythromycin, with mean risk quotient values of 0.50, 0.34 and 0.12, respectively. A membrane bioreactor scenario was also modelled, which reduced risk quotient values for all three macrolides by at least 50 %. Risk of ecological impact for each antibiotic was also examined, by comparing environmental concentrations predicted to safety limits based on toxicity data for cyanobacteria and other organisms from the literature, with azithromycin being identified as the macrolide of highest risk. This study compares and quantifies the risk of resistance development and ecological impact for a high-risk antibiotic group in the Irish context, and demonstrates the potential for risk reduction achieved by adoption of alternative (e.g. membrane bioreactor) technology.


Asunto(s)
Antibacterianos , Macrólidos , Humanos , Antibacterianos/toxicidad , Macrólidos/toxicidad , Azitromicina/toxicidad , Claritromicina , Eritromicina
9.
Sci Total Environ ; 854: 158815, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115396

RESUMEN

Bisphenol A (BPA), a synthetic chemical which has raised concerns due to its potential toxicological effects on humans, has been widely detected in canned and non-canned meat and meat products. This study estimated BPA migration from packaging to non-canned and canned meat products by developing two probabilistic models. BPA concentration data in packaging materials were collated, including polyethylene terephthalate, polyvinyl chloride, epoxy-based coatings, and polyester-based coatings. Migration ratios were calculated from migration tests of BPA molecules moving from packaging to food simulants. The predictive model revealed that the BPA migration concentration from packaging ranges from 0.017 to 0.13 (5th-95th percentile) µg kg-1 with a simulated mean of 0.056 µg kg-1 in non-canned meat products. This is in stark contrast to the simulated mean of 134.57 (5th-95th percentile: 59.17-223.25) µg kg-1 for canned meat products. Nevertheless, plastic packaging was estimated to contribute only 3 % of BPA levels in non-canned meat products. The sensitivity analysis showed that the contact area of meat products with films is the most sensitive parameter of the plastic packaging migration model. It is concluded that plastic packaging may not be the only or dominant source of BPA in non-canned meat products.


Asunto(s)
Alimentos en Conserva , Productos de la Carne , Humanos , Alimentos en Conserva/análisis , Contaminación de Alimentos/análisis , Compuestos de Bencidrilo/análisis , Embalaje de Alimentos
10.
Environ Res ; 213: 113734, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750124

RESUMEN

Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 µg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.


Asunto(s)
Productos de la Carne , Compuestos de Bencidrilo/análisis , Compuestos de Bencidrilo/toxicidad , Peso Corporal , Contaminación de Alimentos/análisis , Humanos , Fenoles , Medición de Riesgo
11.
Sci Total Environ ; 833: 155149, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35421482

RESUMEN

Bovine mastitis is an infectious disease that causes udder inflammation and is responsible for raw milk losses across European dairy farms. It is associated with reduced cow milk yield and contributes to elevated Somatic Cell Count (SCC) in raw milk. Staphylococcus aureus is one of the most prevalent mastitis pathogens that cause subclinical and clinical mastitis and can be present as a coloniser bacterium in cows. Climate change and geographical variability may influence the prevalence of this pathogen. Thus, this research aimed to predict the raw milk losses in three major dairy-producing regions across Europe (i.e. Mediterranean, Atlantic and Continental) under climate change scenarios. An exposure assessment model and a stepwise probabilistic model were developed to predict potential cow milk yield reduction, S. aureus and SCC concentrations in the bulk tank milk at dairy farms. Baseline (i.e. present) and future climate change scenarios were defined, and the resultant concentrations of SCC and S. aureus were compared to the actual European regulatory limits. Across the three regions, raw milk losses ranged from 1.06% to 2.15% in the baseline. However, they increased up to 3.21% in the climate change scenarios when no on-farm improvements were considered. Regarding geographical variation, the highest potential milk losses were reported for the Mediterranean and the lowest for the Continental region. Concerning the fulfilment of the regulatory limits, the mean of S. aureus and SCC levels in milk did not exceed them either in any region or scenario. Nevertheless, when looking at percentiles, the 10th percentile remained above the limits of S. aureus in Atlantic and Mediterranean, but not in the Continental region. The findings provide a snapshot of climate change impacts on raw milk losses due to mastitis. They will allow farmers to detect weaknesses and prepare them to develop adaptation plans to climate change.


Asunto(s)
Mastitis Bovina , Animales , Bovinos , Recuento de Células/veterinaria , Cambio Climático , Industria Lechera , Granjas , Femenino , Humanos , Mastitis Bovina/epidemiología , Mastitis Bovina/microbiología , Leche , Staphylococcus aureus
12.
J Hazard Mater ; 429: 128399, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236026

RESUMEN

Microplastics (MPs) have been detected globally in the marine environment. MP polymers of various kinds have different toxicity potentials when decomposed into monomers. Also, the toxicity of MPs is influenced by the particle size distribution of MPs. Based on these parameters, a semi-quantitative risk assessment model has been developed in this study to rank MP polymers of potential health concern emerging from marine exposure pathways. A screening strategy was used to categorize three probability factors and two impact factors and calculate the final risk scores. Four different scenarios were assessed to investigate the influence of risk factors on the model output. The screening strategy prioritised PUR, PVC, PAN, ABS, PMMA, SAN, TPU, UP, PET, PS, and HDPE as the top-ranking polymers of concern (descending order). The sensitivity analysis revealed parameters that influenced the final risk score were hazard score based on monomer classification (RF5 coefficient +0.60)> particle size distribution of MPs (RF4 +0.54)> annual global waste generation (RF1 +0.52)> status of degradation in the marine environment (RF3 +0.32)> mean density of polymers (RF2 +0.16). The outcome of this study can inform the scientific community and the policymakers for better management of MPs where regulation and guidelines need to be considered.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Microplásticos/toxicidad , Plásticos/toxicidad , Polímeros/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Sci Total Environ ; 823: 153730, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35143789

RESUMEN

Marine plastic waste pollution is one of the most urgent global marine environmental problems worldwide. It has attracted worldwide attention from governments, the public, the scientific community, media and non-governmental organizations and has become a hot issue in current marine ecology and environmental research. This research aimed to conduct a traditional review of the current state of the art regarding microplastics (MPs) definition and characterisation, including an assessment of MPs detected in marine and food systems. The review revealed that plastic waste is not biodegraded and can only be broken down, predominantly by physical processes, into small particles of micron to nanometre size. Particles (<150 µm) can be ingested by living organisms, migrate through the intestinal wall and reach lymph nodes and other body organs. The primary pathway of human exposure to MPs has been identified as gastrointestinal ingestion (mainly seafood for the general population), pulmonary inhalation, and dermal infiltration. MPs may pollute drinking water, accumulate in the food chain, and release toxic chemicals that may cause disease, including certain cancers. Micro/nano-plastics may pose acute toxicity, (sub) chronic toxicity, carcinogenicity, genotoxicity, and developmental toxicity. In addition, nanoplastics (NPs) may pose chronic toxicity (cardiovascular toxicity, hepatotoxicity, and neurotoxicity). The toxicity of MPs/NPs primarily depends on the particle size distribution and monomeric composition/characteristics of polymers. Polyurethane (PUR), Polyacrylonitrile (PAN), Polyvinyl chloride (PVC), Epoxy resin, and Acrylonitrile-butadiene-styrene (ABS) are categorised as the most toxic polymers based on monomer toxicity. MP detection methods include combinations of spectroscopic analysis (RS and FTIR) and chromatography (TED-GC/MS). MP/NP toxicological properties and general quantitative and qualitative analysis methods used in MPs Risk Assessment (RA) are summarised. A robust dose-response model for MPs/NPs requires further investigation. This study lays the foundation for the evaluation of MP/NP risk assessment in the marine ecosystem and potential implications for human health.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Contaminación Ambiental/análisis , Cadena Alimentaria , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
14.
Sci Total Environ ; 826: 154008, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35192828

RESUMEN

Antibiotic use in the healthcare and agriculture sectors has resulted in levels being found in environmental compartments including surface waters. This can create a selective pressure toward antibiotic resistance development, representing a potential risk to human health. Examining the Irish scenario, this screening paper develops a novel risk ranking model to comparatively assess, on a national scale, the predicted amount of antibiotics entering water bodies as a result of their use in healthcare and agricultural sectors, and the subsequent risk of antibiotic resistance development. Probabilistic modelling approaches, based on data sourced from published literature on antibiotics, are used to account for inherent uncertainty and variability in the input factors; usage, metabolism, degradation and wastewater removal rates, estimating the mass of six antibiotic classes released daily from both sectors. These mass estimates are used to generate predicted concentrations and risk quotient values for each drug class, utilising estimated minimum inhibitory concentration values sourced from the literature. Modelled results predict higher risk quotient (RQ) values in the healthcare compared to agriculture sector, with macrolides and penicillins ranking highest in terms of RQ value. A lower RQ is also predicted from human-use tetracyclines, trimethoprim, and quinolones. Avenues for runoff reduction for each antibiotic class, in particular the higher-risk classes, in both usage sectors are discussed. For validation, predicted levels are compared to observed levels of antibiotic residues in Ireland. Key knowledge gaps to assist prediction and modelling of antibiotic pollution in future studies are also discussed. This research paper establishes a protocol and model structure, applicable to other regions, to compare the contributions of healthcare and agriculture to antibiotic pollution, and identifies highest-ranked antibiotic classes in terms of potential resistance development for prioritisation in the Irish situation.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Antibacterianos/análisis , Farmacorresistencia Microbiana , Humanos , Tetraciclinas , Trimetoprim
15.
J Food Prot ; 85(2): 355-372, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614149

RESUMEN

ABSTRACT: Nanotechnology has developed into one of the most groundbreaking scientific fields in the last few decades because it exploits the enhanced reactivity of materials at the atomic scale. The current classification of nanoparticles (NPs) used in foods is outlined in relation to the production and physicochemical characteristics. This review aims to concisely present the most popular and widely used inorganic and organic NPs in food industries. Considering that the toxicity of NPs is often associated with chemical reactivity, a series of in vitro toxicity studies are also summarized, integrating information on the type of NP studies and reported specifications, type of cells used, exposure conditions, and assessed end points. The important role of the digestive system in the absorption and distribution of nanoformulated foods within the body and how this affects the resultant cytotoxicity. Examples of how NPs and their accumulation within different organs are presented in relation to the consumption of specific foods. Finally, the role of developing human health risk assessments to characterize both the potential impact of the hazard and the likelihood or level of human exposure is outlined. Uncertainties exist around risk and exposure assessments of NPs due to limited information on several aspects, including toxicity, behavior, and bioaccumulation. Overall, this review presents current trends and needs for future assessments in toxicity evaluation to ensure the safe application of NPs in the food industry.


Asunto(s)
Nanopartículas , Alimentos , Humanos , Nanopartículas/toxicidad , Medición de Riesgo
16.
Chemosphere ; 286(Pt 3): 131928, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34418654

RESUMEN

Heavy metal pollution may cause a serious threat to human health and is a global problem. The bio-availability of metals and metalloids (metal (loid)s) in the soil is a dominating parameter for metal (loid) uptake by plants, and which may subsequently be ingested by individuals through the food pathway. This study aimed to develop a novel approach based on a semi-quantitative probability-impact (P-I) matrix with the help of a GIS mapping tool. ArcGIS was used for data analysis, classification, and reclassification of parameters of the model. Nine influencing parameters were selected for a semi-quantitative risk ranking. These are soil pH, soil organic carbon (SOC), soil texture class, slope, field/soil drainage class, Integrated Risk Quotient (IRQ), proximity to mines, urban activity, and potential biosolids application areas. The results revealed that certain areas (including Co. Louth, Co. Wicklow, Co. Wexford) along the East coast of Ireland pose a higher relative risk. Therefore, in-depth quantitative human health risk assessment is proposed considering the potential bioaccumulation of metal (loid)s if the crops are grown on land with elevated levels of metal (loid)s. Furthermore, this work reveals the usefulness of the GIS mapping techniques in risk assessment to rank areas of elevated levels of potential pollutants.


Asunto(s)
Metaloides , Metales Pesados , Contaminantes del Suelo , Carbono , China , Monitoreo del Ambiente , Sistemas de Información Geográfica , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
17.
Sci Total Environ ; 810: 151168, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34710405

RESUMEN

Drinking water and farm-to-fork pathways have been identified as the predominant environmental pathways associated with human exposure (HE) to Pb. This study integrates a GIS-based survey of metal concentrations in soil and a probabilistic quantitative risk assessment of Pb through the food chain. The case study area was selected in the east of Ireland. A step-wise exposure assessment collated the data for Pb concentration in soil and water media, bioaccumulation of Pb in unprocessed food products, such as potatoes, carrots, green vegetables, and salad vegetables. The daily mean HE to Pb through selected food products was found to be 0.073 mg day-1, where a mean weekly exposure was estimated as 0.0065 mg kg body weight-1 week-1. Multiple risk estimates were used. Hazard Quotient (HQ), Daily Dietary Index (DDI), Daily Intake of Metal (DIM), Health Risk Index (HRI), Target Hazard Quotient (THQ) and Cancer Risk (CR) were found as 0.234 to 0.669, 0.002, 0.0002, 0.020 to 0.057, 0.234 to 0.669, and 0.00001, respectively which signify a low to moderate risk. A sensitivity analysis revealed that intake of potato is the most sensitive parameter of the model, which is positively correlated (coeff. + 0.66) followed by concentration of Pb in the arable soil (+0.49), bioaccumulation in tubers (+0.37), consumption of salad vegetables (+0.20), and consumption of green vegetables (+0.13) (top 5). A back-calculated limit of Pb in the soil (51 mg kg-1) justifies the lower threshold limit of Pb (50-300 mg kg-1) in agricultural soil set by the European Union to mitigate potential bio-transfer into food products. The study concludes there is a low to moderate risk posed by Pb, within the system boundary of the probabilistic model, and highlights the significance of limiting Pb concentrations in the vegetable producing agricultural soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Humanos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Verduras
18.
Sci Total Environ ; 806(Pt 3): 151227, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715220

RESUMEN

Farmyard manure and slurry (FYM&S) and anaerobic digestate are potentially valuable soil conditioners providing important nutrients for plant development and growth. However, these organic fertilisers may pose a microbial health risk to humans. A quantitative microbial risk assessment (QMRA) model was developed to investigate the potential human exposure to pathogens following the application of FYM&S and digestate to agricultural land. The farm-to-fork probabilistic model investigated the fate of microbial indicators (total coliforms and enterococci) and foodborne pathogens in the soil with potential contamination of ready-to-eat salads (RTEs) at the point of human consumption. The processes examined included pathogen inactivation during mesophilic anaerobic digestion (M-AD), post-AD pasteurisation, storage, dilution while spreading, decay in soil, post-harvest washing processes, and finally, the potential growth of the pathogen during refrigeration/storage at the retail level in the Irish context. The QMRA highlighted a very low annual probability of risk (Pannual) due to Clostridium perfringens, norovirus, and Salmonella Newport across all scenarios. Mycobacterium avium may result in a very high mean Pannual for the application of raw FYM&S, while Cryptosporidium parvum and pathogenic E. coli showed high Pannual, and Listeria monocytogenes displayed moderate Pannual for raw FYM&S application. The use of AD reduces this risk; however, pasteurisation reduces the Pannual to an even greater extent posing a very low risk. An overall sensitivity analysis revealed that mesophilic-AD's inactivation effect is the most sensitive parameter of the QMRA, followed by storage and the decay on the field (all negatively correlated to risk estimate). The information generated from this model can help to inform guidelines for policymakers on the maximum permissible indicator or pathogen contamination levels in the digestate. The QMRA can also provide the AD industry with a safety assessment of pathogenic organisms resulting from the digestion of FYM&S.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Ensaladas , Anaerobiosis , Escherichia coli , Humanos , Estiércol , Medición de Riesgo
19.
Sci Total Environ ; 802: 149839, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455276

RESUMEN

Elevated human exposure to metals and metalloids (metal(loid)s) may lead to acute sickness and pose a severe threat to human health. The human body is exposed to metal(loid)s principally through food, water, supplements, and (occasionally) air. There are inherent background levels of many metal(loid)s in regional soils as a consequence of geological sources. Baseline levels coupled with anthropogenic sources such as regional application of biosolids may lead to increased levels of certain metal(loid)s in soil, leading to potential transfer to water sources and potential uptake by plants. The latter could potentially transfer into the feed-to-food chain, viz. grazing animals, and bio-transfer to food products resulting in human exposure. This study addresses health concerns due to excessive intake of metal(loid)s by conducting a traditional review of peer-reviewed journals between 2015 and 2019, secondary references and relevant websites. The review identified the most researched metal(loid)s as Cu, Zn, Pb, Cd, Ni, Cr, As, Hg, Mn, Fe in the environment. The potential uptake of metal(loid)s by plants (phytoavailability) is a function of the mobility/retainability of metal(loid)s in the soil, influenced by soil geochemistry. The most critical parameters (including soil pH, soil organic matter, clay content, cation exchange capacity, the capability of decomposition of organic matter by microbes, redox potential, ionic strength) influencing metal(loid)s in soil are reviewed and used as a foundation to build a framework model for ranking metal(loid)s of concern. A robust quantitative risk assessment model is recommended for evaluating risk from individual metal(loid)s based on health-based indices (Daily Dietary Index (DDI), No Observed Adverse Effect Level (NOAEL), and Lowest Observed Adverse Effect Level (LOAEL)). This research proposes a risk assessment framework for potentially harmful metal(loid)s in the environment and highlights where regulation and intervention may be required.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente , Humanos , Irlanda , Metales Pesados/análisis , Factores de Riesgo , Contaminantes del Suelo/análisis
20.
EFSA J ; 19(12): e06932, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34900004

RESUMEN

The European Commission requested EFSA to assess if different thermal processes achieve a 5 log10 reduction in Enterococcus faecalis or Salmonella Senftenberg (775W) and (if relevant) a 3 log10 reduction in thermoresistant viruses (e.g. Parvovirus) as well as if different chemical processes achieve a 3 log10 reduction of eggs of Ascaris sp., in eight groups of Category 2 and 3 derived products and animal by-products (ABP). These included (1) ash derived from incineration, co-incineration and combustion; (2) glycerine derived from the production of biodiesel and renewable fuels; (3) other materials derived from the production of biodiesel and renewable fuels; (4) hides and skins; (5) wool and hair; (6) feathers and down; (7) pig bristles; and (8) horns, horn products, hooves and hoof products. Data on the presence of viral hazards and on thermal and chemical inactivation of the targeted indicator microorganisms and biological hazards under relevant processing conditions were extracted via extensive literature searches. The evidence was assessed via expert knowledge elicitation. The certainty that the required log10 reductions in the most resistant indicator microorganisms or biological hazards will be achieved for each of the eight groups of materials mentioned above by the thermal and/or chemical processes was (1) 99-100% for the two processes assessed; (2) 98-100% in Category 2 ABP, at least 90-99% in Category 3 ABP; (3) 90-99% in Category 2 ABP; at least 66-90% in Category 3 ABP; (4) 10-66% and 33-66%; (5) 1-33% and 10-50%; (6) 66-90%; (7) 33-66% and 50-95%; (8) 66-95%, respectively. Data generation on the occurrence and reduction of biological hazards by thermal and/or chemical methods in these materials and on the characterisation of the usage pathways of ABP as organic fertilisers/soil improvers is recommended.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA