Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37655761

RESUMEN

We develop an accurate and numerically efficient non-adiabatic path-integral approach to simulate the non-linear spectroscopy of exciton-polariton systems. This approach is based on the partial linearized density matrix approach to model the exciton dynamics with explicit propagation of the phonon bath environment, combined with a stochastic Lindblad dynamics approach to model the cavity loss dynamics. Through simulating both linear and polariton two-dimensional electronic spectra, we systematically investigate how light-matter coupling strength and cavity loss rate influence the optical response signal. Our results confirm the polaron decoupling effect, which is the reduced exciton-phonon coupling among polariton states due to the strong light-matter interactions. We further demonstrate that the polariton coherence time can be significantly prolonged compared to the electronic coherence outside the cavity.

2.
Opt Express ; 30(25): 45008-45019, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522912

RESUMEN

We demonstrate rapid imaging based on four-wave mixing (FWM) by assessing the quality of advanced materials through measurement of their nonlinear response, exciton dephasing, and exciton lifetimes. We use a WSe2 monolayer grown by chemical vapor deposition as a canonical example to demonstrate these capabilities. By comparison, we show that extracting material parameters such as FWM intensity, dephasing times, excited state lifetimes, and distribution of dark/localized states allows for a more accurate assessment of the quality of a sample than current prevalent techniques, including white light microscopy and linear micro-reflectance spectroscopy. We further discuss future improvements of the ultrafast FWM techniques by modeling the robustness of exponential decay fits to different spacing of the sampling points. Employing ultrafast nonlinear imaging in real-time at room temperature bears the potential for rapid in-situ sample characterization of advanced materials and beyond.

3.
J Chem Phys ; 156(21): 214704, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676152

RESUMEN

Transition metal dichalcogenides (TMDs) are regarded as a possible material platform for quantum information science and related device applications. In TMD monolayers, the dephasing time and inhomogeneity are crucial parameters for any quantum information application. In TMD heterostructures, coupling strength and interlayer exciton lifetimes are also parameters of interest. However, many demonstrations in TMDs can only be realized at specific spots on the sample, presenting a challenge to the scalability of these applications. Here, using multi-dimensional coherent imaging spectroscopy, we shed light on the underlying physics-including dephasing, inhomogeneity, and strain-for a MoSe2 monolayer and identify both promising and unfavorable areas for quantum information applications. We, furthermore, apply the same technique to a MoSe2/WSe2 heterostructure. Despite the notable presence of strain and dielectric environment changes, coherent and incoherent coupling and interlayer exciton lifetimes are mostly robust across the sample. This uniformity is despite a significantly inhomogeneous interlayer exciton photoluminescence distribution that suggests a bad sample for device applications. This robustness strengthens the case for TMDs as a next-generation material platform in quantum information science and beyond.

4.
Phys Rev Lett ; 128(20): 203603, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657853

RESUMEN

We report tunable excitation-induced dipole-dipole interactions between silicon-vacancy color centers in diamond at cryogenic temperatures. These interactions couple centers into collective states, and excitation-induced shifts tag the excitation level of these collective states against the background of excited single centers. By characterizing the phase and amplitude of the spectrally resolved interaction-induced signal, we observe oscillations in the interaction strength and population state of the collective states as a function of excitation pulse area. Our results demonstrate that excitation-induced dipole-dipole interactions between color centers provide a route to manipulating collective intercenter states in the context of a congested, inhomogeneous ensemble.

5.
Opt Lett ; 46(19): 4813-4816, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598206

RESUMEN

We show that accelerated nonlinear imaging, such as stimulated Raman scattering and pump-probe imaging, is enabled by an order of magnitude reduction of data acquisition time when replacing the exponentially-weighted-moving-average low-pass filter in a lock-in amplifier with a simple-moving-average filter. We show that this simple-moving-average (box) lock-in yields a superior signal-to-noise ratio and suppression of extraneous modulations with short pixel dwell times, if one condition for the relation between the lock-in time constant and modulation frequencies is met. Our results, both theoretical and experimental, indicate that for nonlinear imaging applications, the box lock-in significantly outperforms conventional lock-in detection. These results facilitate the application of ultrafast and nonlinear imaging as a new standard for material characterization.

6.
Opt Lett ; 46(15): 3556-3559, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329223

RESUMEN

A four-wave-mixing, frequency-comb-based, hyperspectral imaging technique that is spectrally precise and potentially rapid, and can in principle be applied to any material, is demonstrated in a near-diffraction-limited microscopy application.

7.
Phys Rev Lett ; 126(21): 213601, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34114873

RESUMEN

We characterize a high-density sample of negatively charged silicon-vacancy (SiV^{-}) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a hidden population of SiV^{-} centers that is not typically observed in photoluminescence and which exhibits significant spectral inhomogeneity and extended electronic T_{2} times. The phenomenon is likely caused by strain, indicating a potential mechanism for controlling electric coherence in color-center-based quantum devices.

8.
ACS Nano ; 15(4): 6499-6506, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33769788

RESUMEN

Perovskite nanoplatelets possess extremely narrow absorption and emission line widths, which are crucial characteristics for many optical applications. However, their underlying intrinsic and extrinsic line-broadening mechanisms are poorly understood. Here, we apply multidimensional coherent spectroscopy to determine the homogeneous line broadening of colloidal perovskite nanoplatelet ensembles. We demonstrate a dependence of not only their intrinsic line widths but also of various broadening mechanisms on platelet geometry. We find that decreasing nanoplatelet thickness by a single monolayer results in a 2-fold reduction of the inhomogeneous line width and a 3-fold reduction of the intrinsic homogeneous line width to the sub-millielectronvolts regime. In addition, our measurements suggest homogeneously broadened exciton resonances in two-layer (but not necessarily three-layer) nanoplatelets at room-temperature.

9.
Opt Lett ; 45(20): 5852-5855, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33057301

RESUMEN

As optical two-dimensional coherent spectroscopy (2DCS) is extended to a broader range of applications, it is critical to improve the detection sensitivity of optical 2DCS. We developed a fast phase-cycling scheme in a non-collinear optical 2DCS implementation by using liquid crystal phase retarders to modulate the phases of two excitation pulses. The background in the signal can be eliminated by combining either two or four interferograms measured with a proper phase configuration. The effectiveness of this method was validated in optical 2DCS measurements of an atomic vapor. This fast phase-cycling scheme will enable optical 2DCS in novel emerging applications that require enhanced detection sensitivity.

10.
Rev Sci Instrum ; 91(8): 083111, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32872924

RESUMEN

We propose a method to generate stabilized radio-frequency polarization modulation based on optical frequency combs. Two pulse trains with the same repetition rate and different offset frequencies generate arbitrary polarization states that are modulated at the offset frequency difference. Long-term stability of the polarization modulation is demonstrated with the modulation frequency at frep/2. Modulation at frep/4 is also demonstrated to show the flexibility of the technique. We employ an electrical delay line to fine-tune the polarization states that constitute the time-dependent modulation.

11.
Opt Express ; 28(15): 21825-21834, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752454

RESUMEN

We demonstrate simple optical frequency combs based on semiconductor quantum well laser diodes. The frequency comb spectrum can be tailored by choice of material properties and quantum-well widths, providing spectral flexibility. We demonstrate the correlation in the phase fluctuations between two devices on the same chip by generating a radio-frequency dual comb spectrum.

12.
J Chem Phys ; 151(19): 191103, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757140

RESUMEN

The bandgaps of CsPbI3 perovskite nanocrystals are measured by absorption spectroscopy at cryogenic temperatures. Anomalous bandgap shifts are observed in CsPbI3 nanocubes and nanoplatelets, which are modeled accurately by bandgap renormalization due to lattice vibrational modes. We find that decreasing dimensionality of the CsPbI3 lattice in nanoplatelets greatly reduces electron-phonon coupling, and dominant out-of-plane quantum confinement results in a homogeneously broadened absorption line shape down to cryogenic temperatures. An absorption tail forms at low-temperatures in CsPbI3 nanocubes, which we attribute to shallow defect states positioned near the valence band edge.

13.
J Phys Chem Lett ; 10(20): 6144-6150, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31556615

RESUMEN

Coupling to phonon modes is a primary mechanism of excitonic dephasing and energy loss in semiconductors. However, low-energy phonons in colloidal quantum dots and their coupling to excitons are poorly understood because their experimental signatures are weak and usually obscured by the unavoidable inhomogeneous broadening of colloidal dot ensembles. We use multidimensional coherent spectroscopy at cryogenic temperatures to extract the homogeneous nonlinear optical response of excitons in a CdSe/CdZnS core/shell colloidal quantum dot ensemble. A comparison to the simulation provides evidence that the observed lineshapes arise from the coexistence of confined and delocalized vibrational modes, both of which couple strongly to excitons in CdSe/CdZnS colloidal quantum dots.

14.
Nat Mater ; 18(7): 658-659, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31217556
15.
Sci Adv ; 4(6): eaar7697, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29868644

RESUMEN

Optical coherent multidimensional spectroscopy is a powerful technique for unraveling complex and congested spectra by spreading them across multiple dimensions, removing the effects of inhomogeneity, and revealing underlying correlations. As the technique matures, the focus is shifting from understanding the technique itself to using it to probe the underlying dynamics in the system being studied. However, these dynamics can be difficult to discern because they are convolved with the nonlinear optical response of the system. Inspired by methods used to deblur images, we present a method for deconvolving the underlying dynamics from the optical response. To demonstrate the method, we extract the many-particle diffusion Green's functions for excitons in a semiconductor quantum well from two-dimensional coherent spectra.

16.
Phys Rev Lett ; 120(23): 233401, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29932700

RESUMEN

Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.

17.
Opt Express ; 26(9): 12049-12056, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716121

RESUMEN

The determination of the properties (i.e. line center, width, and amplitude) of a spectral line is simulated using a Monte Carlo method. For dual-comb spectroscopy, ideal repetition rates emerge for both the signal and LO combs that do not correspond to the repetition rates that possess the highest signal-to-noise ratio. The determination is even more accurate when the repetition rates have an arbitrary near-harmonic ratio. The simulation results are generalized to allow for the comparison of any two spectroscopic systems (i.e. not just comb-based systems) by performing the simulations as a function of the spectral point spacing and signal-to-noise ratio of the acquired data.

18.
Sci Rep ; 7(1): 14018, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29070889

RESUMEN

Optical multi-dimensional coherent spectroscopy is a powerful technique for studying the structure, properties and ultrafast dynamics of atoms, molecules, semiconductor materials and complex systems. Current implementations of multi-dimensional coherent spectroscopy have long acquisition times and/or limited spectral resolution. In addition, most of the techniques utilize complex geometries or phase cycling schemes to isolate non-linear signals. We demonstrate a novel approach of using frequency combs to perform rapid, high resolution and background free multi-dimensional coherent spectroscopy of semiconductor materials. Our approach is inspired by dual-comb spectroscopy, which has been proven to be a versatile tool for obtaining one dimensional absorption spectra with high resolution in a short acquisition time. We demonstrate the method using a GaAs multi-quantum well sample.

19.
Science ; 357(6358): 1389-1391, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963253

RESUMEN

Dual laser frequency combs can rapidly measure high-resolution linear absorption spectra. However, one-dimensional linear techniques cannot distinguish the sources of resonances in a mixture of different analytes, nor can they separate inhomogeneous and homogeneous broadening. Here, we overcame these limitations by acquiring high-resolution multidimensional nonlinear coherent spectra with frequency combs. We experimentally differentiated and assigned the Doppler-broadened features of two naturally occurring isotopes of rubidium atoms (87Rb and 85Rb) according to the placement of their hyperfine energy states in a two-dimensional spectrum.

20.
Adv Phys X ; 2(3): 641-674, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28894306

RESUMEN

Multi-dimensional coherent spectroscopy (MDCS) has become an extremely versatile and sensitive technique for elucidating the structure, composition, and dynamics of condensed matter, atomic, and molecular systems. The appeal of MDCS lies in its ability to resolve both individual-emitter and ensemble-averaged dynamics of optically created excitations in disordered systems. When applied to semiconductors, MDCS enables unambiguous separation of homogeneous and inhomogeneous contributions to the optical linewidth, pinpoints the nature of coupling between resonances, and reveals signatures of many-body interactions. In this review, we discuss the implementation of MDCS to measure the nonlinear optical response of excitonic transitions in semiconductor nanostructures. Capabilities of the technique are illustrated with recent experimental studies that advance our understanding of optical decoherence and dissipation, energy transfer, and many-body phenomena in quantum dots and quantum wells, semiconductor microcavities, layered semiconductors, and photovoltaic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...