Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pest Manag Sci ; 70(4): 559-65, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23650150

RESUMEN

BACKGROUND: Higher rates of diseases transmitted from insects to humans led to the increased use of organophosphate insecticides, proven to be harmful to human health and the environment. New, more effective chemical formulations with minimum genetic toxicity effects have become the object of intense research. These formulations include larvicides derived from plant extracts such as dillapiol, a phenylpropanoid extracted from Piper aduncum, and from microorganisms such as spinosad, formed by spinosyns A and D derived from the Saccharopolyspora spinosa fermentation process. This study investigated the genotoxicity of dillapiol and spinosad, characterising and quantifying mutation events and chromosomal and/or mitotic recombination using the somatic mutation and recombination test (SMART) in wings of Drosophila melanogaster. RESULTS: Standard cross larvae (72 days old) were treated with different dillapiol and spinosad concentrations. Both compounds presented positive genetic toxicity, mainly as mitotic recombination events. Distilled water and doxorubicin were used as negative and positive controls respectively. CONCLUSION: Spinosad was 14 times more genotoxic than dillapiol, and the effect was found to be purely recombinogenic. However, more studies on the potential risks of insecticides such as spinosad and dillapiol are necessary, based on other experimental models and methodologies, to ensure safe use.


Asunto(s)
Dioxoles/toxicidad , Insecticidas/toxicidad , Macrólidos/toxicidad , Mutágenos/toxicidad , Compuestos Alílicos , Animales , Daño del ADN , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Combinación de Medicamentos , Larva/efectos de los fármacos , Larva/genética , Pruebas de Mutagenicidad , Recombinación Genética
2.
An Acad Bras Cienc ; 85(3): 955-64, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068085

RESUMEN

Ethnobotanical surveys of Cerrado native plants show that leaves of Celtis iguanaea (Jacq.) Sargent (Cannabaceae), popularly known in Brazil as "esporão de galo", are used in folk medicine for body pain, asthma, cramps, poor digestion, urinary infection, kidney dysfunctions, as well as a stimulant and diuretic. This work aimed at evaluating possible C. iguanaea aqueous leaf extract (CALE) cytotoxicity, genotoxicity, and antigenotoxicity using the mouse bone marrow micronucleous test. To assess CALE genotoxicity, Swiss mice were orally treated with three different extract concentrations (100, 300, and 500 mgkg-1). To evaluate its antigenotoxicity, the same doses were used simultaneously with a single i.p. dose of mitomycin C (MMC, 4mg.kg-1). The frequencies of micronucleated polychromatic erythrocytes (MNPCE) were evaluated 24 h and 48 h after administration except for the negative control (24 h). Genotoxicity was evaluated using the frequency of micronucleated polychromatic erythrocytes (MNPCE), whereas cytotoxicity was assessed by the polychromatic and normochromatic erythrocytes ratio (PCE/NCE). The results showed that CALE did not exhibit a significant reduction in the PCE/NCE ratio, neither a considerable increase in the frequency of MNPCE. Nonetheless, CALE reduced bone marrow toxicity (increased PCE/NCE ratio) and decreased the micronuclei frequency induced by MMC. We can conclude that CALE presented no cytotoxic and genotoxic effects, but showed antigenotoxic and anticytotoxic actions under the experimental conditions applied in this study.


Asunto(s)
Antimutagênicos/farmacología , Mutágenos/toxicidad , Extractos Vegetales/farmacología , Ulmaceae/química , Animales , Células de la Médula Ósea/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Pruebas de Micronúcleos , Mitomicina/antagonistas & inhibidores , Mitomicina/toxicidad , Extractos Vegetales/toxicidad , Pruebas de Toxicidad Aguda
3.
An Acad Bras Cienc ; 85(2): 585-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23828338

RESUMEN

Noni, a Hawaiian name for the fruit of Morinda citrifolia L., is a traditional medicinal plant from Polynesia widely used for the treatment of many diseases including arthritis, diabetes, asthma, hypertension and cancer. Here, a commercial noni juice (TNJ) was evaluated for its protective activities against the lesions induced by mitomycin C (MMC) and doxorrubicin (DXR) using the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. Three-day-old larvae, trans-heterozygous for two genetic markers (mwh and flr3 ), were co-treated with TNJ plus MMC or DXR. We have observed a reduction in genotoxic effects of MMC and DXR caused by the juice. TNJ provoked a marked decrease in all kinds of MMC- and DXR-induced mutant spots, mainly due to its antirecombinagenic activity. The TNJ protective effects were concentration-dependent, indicating a dose-response correlation, that can be attributed to a powerful antioxidant and/or free radical scavenger ability of TNJ.


Asunto(s)
Antimutagênicos/farmacología , Bebidas , Frutas/química , Morinda/química , Pruebas de Mutagenicidad/métodos , Animales , Daño del ADN/efectos de los fármacos , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Mitomicina/farmacología , Teofilina/análogos & derivados , Teofilina/farmacología
4.
Genet Mol Biol ; 33(4): 756-60, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21637587

RESUMEN

This study evaluated the clastogenic and/or aneugenic potential of three nucleoside reverse transcriptase inhibitors (zidovudine - AZT, lamivudine - 3TC and stavudine - d4T) using the cytokinesis-block micronucleus (CBMN) assay in human lymphocyte cultures. All three inhibitors produced a positive response when tested in binucleated cells. The genotoxicity of AZT and 3TC was restricted to binucleated cells since there was no significant increase in the frequency of micronuclei in mononucleated cells. This finding indicated that AZT and 3TC caused chromosomal breakage and that their genotoxicity was related to a clastogenic action. In addition to the positive response observed with d4T in binucleated cells, this drug also increased the frequency of micronuclei in mononucleated cells, indicating clastogenic and aneugenic actions. Since the structural differences between AZT and 3TC and AZT and d4T involve the 3' position in the 2'-deoxyribonucleoside and in an unsaturated 2',3',dideoxyribose, respectively, we suggest that an unsaturated 2', 3', dideoxyribose is responsible for the clastogenic and aneugenic actions of d4T.

5.
Genet. mol. biol ; 33(4): 756-760, 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-571521

RESUMEN

This study evaluated the clastogenic and/or aneugenic potential of three nucleoside reverse transcriptase inhibitors (zidovudine - AZT, lamivudine - 3TC and stavudine - d4T) using the cytokinesis-block micronucleus (CBMN) assay in human lymphocyte cultures. All three inhibitors produced a positive response when tested in binucleated cells. The genotoxicity of AZT and 3TC was restricted to binucleated cells since there was no significant increase in the frequency of micronuclei in mononucleated cells. This finding indicated that AZT and 3TC caused chromosomal breakage and that their genotoxicity was related to a clastogenic action. In addition to the positive response observed with d4T in binucleated cells, this drug also increased the frequency of micronuclei in mononucleated cells, indicating clastogenic and aneugenic actions. Since the structural differences between AZT and 3TC and AZT and d4T involve the 3' position in the 2'-deoxyribonucleoside and in an unsaturated 2',3',dideoxyribose, respectively, we suggest that an unsaturated 2', 3', dideoxyribose is responsible for the clastogenic and aneugenic actions of d4T.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA