Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sci Total Environ ; 953: 176053, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39244050

RESUMEN

In many Mediterranean ecosystems, animal tuberculosis (TB), caused by Mycobacterium bovis, an ecovar of Mycobacterium tuberculosis complex (MTBC), is maintained by multi-host communities. It is hypothesised that interspecies transmission is mainly indirect via shared contaminated environments. Therefore, identifying spatial areas where MTBC bacteria occur and quantifying space use by susceptible hosts might help predict the spatial likelihood of transmission across the landscape. Here, we aimed to evaluate the transmission risk of MTBC in a multi-host system involving wildlife (ungulates and carnivores) and cattle (Bos taurus). We collected eighty-nine samples from natural substrates (water, soil, and mud) at 38 sampling sites in a TB endemic area within a Mediterranean agroforestry system in Portugal. These samples were analysed by real-time PCR to detect MTBC DNA. Additionally, host-specific space use intensity maps were obtained through camera-trapping covering the same sampling sites. Results evidenced that a significant proportion of samples were positive for MTBC DNA (49 %), suggesting that the contamination is widespread in the area. Moreover, they showed that the probability of MTBC occurrence in the environment was significantly influenced by topographic features (i.e., slope), although other non-significant predictor related with soil conditions (SMI: soil moisture index) incorporated the MTBC contamination model. The integration of host space use intensity maps with the spatial detection of MTBC showed that the red deer (Cervus elaphus) and wild boar (Sus scrofa) exhibited the highest percentages of high-risk areas for MTBC transmission. Furthermore, when considering the co-occurrence of multiple hosts, transmission risk analyses revealed that 26.5 % of the study area represented high-risk conditions for MTBC transmission, mainly in forest areas.


Asunto(s)
Mycobacterium bovis , Animales , Portugal , Bovinos , Tuberculosis/transmisión , Tuberculosis/epidemiología , Mycobacterium tuberculosis , Monitoreo del Ambiente/métodos , Animales Salvajes/microbiología
3.
Lancet Microbe ; : 100911, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278232

RESUMEN

BACKGROUND: The global distribution and prevalence of arboviral diseases have increased in recent years, driven by factors such as climate change, biodiversity loss, globalisation, and urbanisation. These diseases are often underestimated due to uneven surveillance and unreported asymptomatic cases. Current surveillance relies on vector and clinical surveillance. In this study, we aimed to explore wastewater-based surveillance (WBS) as an additional tool for dengue virus (DENV) and chikungunya virus (CHIKV) tracking. METHODS: In this exploratory surveillance study, WBS was done at eleven wastewater treatment plants in three regions in Portugal (North, Lisboa and Vale do Tejo, and south). Using quantitative RT-PCR, we quantified in raw wastewater the RNA concentrations of DENV and CHIKV (non-structural viral protein 1 [nsP1] and envelope protein [E1] genes) once every 2 weeks for a period of 11 months, between May 16, 2022, and April 19, 2023. Results were normalised with crAssphage (concentration of target viral RNA divided by the concentration of crAssphage DNA) and provided as median normalised viral load. Prevalence (proportion of positive samples) and viral quantities were summarised for the total sampling period, by calendar month, and by seasons. FINDINGS: 273 samples were collected from 11 wastewater treatment plants situated across the North (n=75 samples), Lisboa and Vale do Tejo (n=98), and south (n=100) regions of Portugal. DENV was detected in 68 (25%) of 273 samples, with a median viral load of 1·1 × 10-4 (IQR 3·2 × 10-5 to 8·0 × 10-4). CHIKV was detected in 30 (11%) of 273 samples, with median viral loads of 3·1 × 10-4 (1·6 × 10-4 to 6·4 × 10-4; nsP1 gene) and 7·8 × 10-4 (4·2 × 10-4 to 2·0 × 10-³; E1 gene). The pattern of occurrence of CHIKV was similar between regions whereas slight differences were found for DENV. When combining results for the three studied regions, DENV prevalence and viral load had two seasonal peaks (summer and winter) and CHIKV prevalence and viral load had a single peak during March and April of 2023. INTERPRETATION: This study highlights the potential of WBS as a potent tool for gauging the epidemiological landscape of DENV and CHIKV in Portugal, where autochthonous cases have not yet been detected. WBS could serve as an additional element to conventional surveillance approaches, especially in areas where real-time clinical surveillance data are scarce or delayed. FUNDING: EU Emergency Support Instrument and Fundação para a Ciencia e Tecnologia.

4.
Microbes Infect ; : 105405, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173900

RESUMEN

Mycobacterium caprae is linked to regular outbreaks of tuberculosis (TB) in geographically distinct caprine populations across Europe, namely Iberia where this ecovar may represent up to 8% of total animal TB cases, circulating in multi-host communities encompassing domestic ruminants and wildlife, representing severe financial losses. It also causes zoonotic human disease. In this work, we undertake the first phylodynamic and phylogeographic analyses of M. caprae to reconstruct past demography and transmission chains. First, we examined the worldwide diversity of M. caprae based on 229 unpublished and publicly available whole genome sequences, depicting Asian, Central-East European, and Iberian clades. Phylodynamic analyses of the SB0157 Iberian clade (n = 81) positioned the most recent common ancestor in goats, around 100 years ago. Host transition events were common between goats, wild boars, and humans, possibly resulting from mixed farming, extensive management, and close human proximity, facilitating interspecific transmission. We show the spread of M. caprae on multiple scales due to local and transnational animal trade, supporting historical and sustained cross-species transmission in Iberia. We highlight the value of intersecting genomic epidemiology with molecular ecology to resolve epidemiological links and show that an EU-official eradication program in goats is utterly needed to control TB in a multi-host scenario.

5.
Sci Total Environ ; 944: 173875, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866158

RESUMEN

West Nile (WNV) is a zoonotic arbovirus with an expanding geographical range and epidemic activity in Europe. Not having yet experienced a human-associated epidemic, Portugal remains an outlier in the Mediterranean basin. In this study, we apply ecological niche modelling informed by WNV historical evidence and a multitude of environmental variables from across Portugal. We identify that ecological backgrounds compatible with WNV historical circulation are mostly restricted to the south, characterized by a warmer and drier climate, high avian diversity, specific avian species and land types. We estimate WNV ecological suitability across the country, identifying overlaps with the distributions of the three relevant hosts (humans, birds, equines) for public and animal health. From this, we propose a category-based spatial framework providing first of a kind valuable insights for WNV surveillance in Portugal under the One Health nexus. We forecast that near future climate trends alone will contribute to pushing adequate WNV ecological suitability northwards, towards regions with higher human density. This unique perspective on the past, present and future ecology of WNV addresses existing national knowledge gaps, enhances our understanding of the evolving emergence of WNV, and offers opportunities to prepare and respond to the first human-associated epidemic in Portugal.


Asunto(s)
Aves , Salud Única , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Portugal/epidemiología , Fiebre del Nilo Occidental/epidemiología , Animales , Humanos , Ecosistema , Caballos
6.
Microorganisms ; 12(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38930449

RESUMEN

Environmental decontamination and water disinfection practices are hallmarks of disease prevention and control in agricultural and public health settings. Informed fit-to-purpose biocontainment is thus dependent on methodologies accurately assessing microbial burden and viability. Also, rigorous evaluation of the efficacy of biocontrol measures implies monitoring microbial inactivation after decontamination/disinfection procedures. In this study, we used flow cytometry coupled with a resuscitation protocol to monitor the metabolic inactivation of bacteria capable of entering non-cultivable states, after the application of a chlorine-based water disinfectant. For this purpose, we used Mycobacterium bovis BCG as a model of slow-growing bacteria able to enter dormancy and representing a multi-host pathogen in a zoonotic disease system-animal tuberculosis-thriving both across temperate and semi-arid regions and involving environmental contamination. The biocide activity of a commercial sodium dichloroisocyanurate (NaDCC) disinfectant against M. bovis BCG was evaluated through mock environmental matrix tests. Using the manufacturer-recommended dosage of NaDCC, BCG cells were apparently inactivated after 24 h upon exposure. However, we show via flow cytometry that, upon exposure to optimal growth conditions, mycobacterial cells were able to regain metabolic activity shortly after, highlighting a sublethal effect of NaDCC at the recommended commercial dosage due to reversible BCG cell damage. In contrast, increasing twice the disinfectant dosage completely inactivated BCG cells after 24 h of exposure, with full irreversible loss of metabolic activity. Methodological workflows based on conventional culture or PCR would have missed the detection of these dormant subpopulations that were in fact able to resume growth when following the recommendations of a commercial disinfectant. This study highlights the superior, high-resolution value of single-cell approaches, such as flow cytometry, to accurately assess the activity of biocides against metabolically heterogeneous and dormant pathogenic bacteria with environmental cycles, supporting data-driven prioritization of environmental management and disinfection options in contaminated vulnerable settings.

7.
Environ Pollut ; 356: 124241, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825220

RESUMEN

Staphylococcus aureus thrives at animal-human-environment interfaces. A large-scale work from our group indicated that antimicrobial resistance (AMR) in commensal S. aureus strains from wild ungulates is associated with agricultural land cover and livestock farming, raising the hypothesis that AMR genes in wildlife strains may originate from different hosts, namely via exchange of mobile genetic elements (MGE). In this work, we generate the largest available dataset of S. aureus draft genomes from wild ungulates in Portugal and explore their mobilome, which can determine important traits such as AMR, virulence, and host specificity, to understand MGE exchange. Core genome multi-locus sequence typing based on 98 newly generated draft genomes and 101 publicly available genomes from Portugal demonstrated that the genomic relatedness of S. aureus from wild ungulates assigned to livestock-associated sequence types (ST) is greater compared to wild ungulate isolates assigned to human-associated STs. Screening of host specificity determinants disclosed the unexpected presence in wildlife of the immune evasion cluster encoded in φSa3 prophage, described as a human-specific virulence determinant. Additionally, two plasmids, pAVX and pETB, previously associated with avian species and humans, respectively, and the Tn553 transposon were detected. Both pETB and Tn553 encode penicillin resistance through blaZ. Pangenome analysis of wild ungulate isolates shows a core genome fraction of 2133 genes, with isolates assigned to ST72 and ST3224 being distinguished from the remaining by MGEs, although there is no reported role of these in adaptation to wildlife. AMR related gene clusters found in the shell genome are directly linked to resistance against penicillin, macrolides, fosfomycin, and aminoglycosides, and they represent mobile ARGs. Altogether, our findings support epidemiological interactions of human and non-human hosts at interfaces, with MGE exchange, including AMR determinants, associated with putative indirect movements of S. aureus among human and wildlife hosts that might be bridged by livestock.


Asunto(s)
Animales Salvajes , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Staphylococcus aureus/genética , Humanos , Portugal , Animales Salvajes/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/epidemiología , Secuencias Repetitivas Esparcidas/genética , Genoma Bacteriano , Ganado/microbiología , Virulencia/genética , Tipificación de Secuencias Multilocus , Ciervos , Especificidad del Huésped
8.
Sci Total Environ ; 946: 174272, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38925382

RESUMEN

In response to the rapid emergence and dissemination of antimicrobial resistant bacteria (ARB) and genes (ARGs), integrated surveillance systems are needed to address antimicrobial resistance (AMR) within the One Health Era. Wastewater analyses enable biomarker monitoring at the sewershed level, offering timely insights into pathogen circulation and ARB/ARGs trends originating from different compartments. During two consecutive epidemic waves of the COVID-19 pandemic in Portugal, taxonomic and functional composition of raw urban wastewater from two wastewater treatment plants (WWTPs) representing one million in equivalent population, located in the main urban areas of the country, were profiled by shotgun metagenomics. Hospital wastewater from two central hospitals located in the WWTPs catchment areas were also sequenced. The resistome and virulome were profiled using metagenomic assemblies without taxonomic constraint, and then specifically characterized for ESKAPE pathogens. Urban and hospital wastewater exhibited specific microbiota signatures, Pseudomonadota dominated in the first and Bacteroidota in the latter. Correlation network analyses highlighted 85 (out of top 100) genera co-occurring across samples. The most frequent ARGs were classified in the multidrug, tetracyclines, and Macrolides, Lincosamides, Streptogramins (MLS) classes. Links established between AMR determinants and bacterial hosts evidenced that the diversity and abundance of ARGs is not restricted to ESKAPE, being also highly predominant among emergent enteropathogens, like Aeromonas and Aliarcobacter, or in the iron (II) oxidizer Acidovorax. The Aliarcobacter genus accumulated high abundance of sulphonamides and polymyxins ARGs, while Acinetobacter and Aeromonas hosted the highest abundance of ARGs against beta-lactams. Other bacteria (e.g. Clostridioides, Francisella, Vibrio cholerae) and genes (e.g. vanA-type vancomycin resistance) of public health interest were detected, with targeted monitoring efforts being needed to establish informative baseline data. Altogether, results highlight that wastewater monitoring is a valuable component of pathogen and AMR surveillance in healthy populations, providing a community-representative snapshot of public health trends beyond priority pathogens.


Asunto(s)
Microbiota , Aguas Residuales , Aguas Residuales/microbiología , Portugal , Microbiota/efectos de los fármacos , Microbiota/genética , Metagenómica , Salud Pública , Bacterias/genética , Bacterias/efectos de los fármacos , Monitoreo del Ambiente , Farmacorresistencia Bacteriana/genética , COVID-19 , Eliminación de Residuos Líquidos
9.
J Hazard Mater ; 472: 134473, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703681

RESUMEN

Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.


Asunto(s)
Mycobacterium bovis , Filogenia , Secuenciación Completa del Genoma , Mycobacterium bovis/genética , Animales , Genoma Bacteriano , Tuberculosis Bovina/transmisión , Tuberculosis Bovina/microbiología , Tuberculosis/transmisión , Tuberculosis/microbiología , Bovinos , Microbiología Ambiental , Animales Salvajes/microbiología
10.
Sci Total Environ ; 933: 173027, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729368

RESUMEN

Staphylococcus aureus is a versatile pathobiont, exhibiting a broad host range, including humans, other mammals, and avian species. Host specificity determinants, virulence, and antimicrobial resistance genes are often shared by strains circulating at the animal-human interface. While transmission dynamics studies have shown strain exchange between humans and livestock, knowledge of the source, genetic diversification, and transmission drivers of S. aureus in wildlife lag behind. In this work, we explore a wide array of S. aureus genomes from different sources in the Iberian Peninsula to understand population structure, gene content and niche adaptation at the human-livestock-wildlife nexus. Through Bayesian inference, we address the hypothesis that S. aureus strains in wildlife originate from humanized landscapes, either from contact with humans or through interactions with livestock. Phylogenetic reconstruction applied to whole genome sequence data was completed with a dataset of 450 isolates featuring multiple clones from the 1990-2022 period and a subset of CC398 strains representing the 2008-2022 period. Phylodynamic signatures of S. aureus from the Iberian Peninsula suggest widespread circulation of most clones among humans before jumping to other hosts. The number of transitions of CC398 strains within each host category (human, livestock, wildlife) was high (88.26 %), while the posterior probability of transitions from livestock to wildlife was remarkably high (0.99). Microbial genome-wide association analysis did not evidence genome rearrangements nor biomarkers suggesting S. aureus niche adaptation to wildlife, thus supporting recent spill overs. Altogether, our findings indicate that S. aureus isolates collected in the past years from wildlife most likely represent multiple introduction events from livestock. The clonal origin of CC398 and its potential to disseminate and evolve through different animal host species are highlighted, calling for management practices at the livestock-wildlife axis to improve biosecurity and thus restrict S. aureus transmission and niche expansion along gradients of human influence.


Asunto(s)
Animales Salvajes , Ganado , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Ganado/microbiología , Staphylococcus aureus/genética , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Animales Salvajes/microbiología , España , Humanos , Filogenia , Portugal/epidemiología
11.
Microbiol Spectr ; 12(7): e0382923, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771094

RESUMEN

Mycobacterium bovis causes animal tuberculosis in livestock and wildlife, with an impact on animal health and production, wildlife management, and public health. In this work, we sampled a multi-host tuberculosis community from the official hotspot risk area of Portugal over 16 years, generating the largest available data set in the country. Using phylogenetic and ecological modeling, we aimed to reconstruct the history of circulating lineages across the livestock-wildlife interface to inform intervention and the implementation of genomic surveillance within the official eradication plan. We find evidence for the co-circulation of M. bovis European 1 (Eu1), Eu2, and Eu3 clonal complexes, with Eu3 providing sufficient temporal signal for further phylogenetic investigation. The Eu3 most recent common ancestor (bovine) was dated in the 1990s, subsequently transitioning to wildlife (red deer and wild boar). Isolate clustering based on sample metadata was used to inform phylogenetic inference, unravelng frequent transmission between two clusters that represent an ecological corridor of previously unrecognized importance in Portugal. The latter was associated with transmission at the livestock-wildlife interface toward locations with higher temperature and precipitation, lower agriculture and road density, and lower host densities. This is the first analysis of M. bovis Eu3 complex in Iberia, shedding light on background ecological factors underlying long-term transmission and informing where efforts could be focused within the larger hotspot risk area of Portugal. IMPORTANCE: Efforts to strengthen surveillance and control of animal tuberculosis (TB) are ongoing worlwide. Here, we developed an eco-phylodynamic framework based on discrete phylogenetic approaches informed by M. bovis whole-genome sequence data representing a multi-host transmission system at the livestock-wildlife interface, within a rich ecological landscape in Portugal, to understand transmission processes and translate this knowledge into disease management benefits. We find evidence for the co-circulation of several M. bovis clades, with frequent transmission of the Eu3 lineage among cattle and wildlife populations. Most transition events between different ecological settings took place toward host, climate and land use gradients, underscoring animal TB expansion and a potential corridor of unrecognized importance for M. bovis maintenance. Results stress that animal TB is an established wildlife disease without ecological barriers, showing that control measures in place are insufficient to prevent long-distance transmission and spillover across multi-host communities, demanding new interventions targeting livestock-wildlife interactions.


Asunto(s)
Animales Salvajes , Mycobacterium bovis , Filogenia , Portugal/epidemiología , Animales , Mycobacterium bovis/genética , Mycobacterium bovis/clasificación , Mycobacterium bovis/aislamiento & purificación , Bovinos , Animales Salvajes/microbiología , Ganado/microbiología , Tuberculosis Bovina/transmisión , Tuberculosis Bovina/microbiología , Tuberculosis Bovina/epidemiología , Ciervos/microbiología , Sus scrofa/microbiología , Tuberculosis/transmisión , Tuberculosis/microbiología , Tuberculosis/epidemiología , Tuberculosis/veterinaria
12.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612679

RESUMEN

Epidemiological surveillance of animal tuberculosis (TB) based on whole genome sequencing (WGS) of Mycobacterium bovis has recently gained track due to its high resolution to identify infection sources, characterize the pathogen population structure, and facilitate contact tracing. However, the workflow from bacterial isolation to sequence data analysis has several technical challenges that may severely impact the power to understand the epidemiological scenario and inform outbreak response. While trying to use archived DNA from cultured samples obtained during routine official surveillance of animal TB in Portugal, we struggled against three major challenges: the low amount of M. bovis DNA obtained from routinely processed animal samples; the lack of purity of M. bovis DNA, i.e., high levels of contamination with DNA from other organisms; and the co-occurrence of more than one M. bovis strain per sample (within-host mixed infection). The loss of isolated genomes generates missed links in transmission chain reconstruction, hampering the biological and epidemiological interpretation of data as a whole. Upon identification of these challenges, we implemented an integrated solution framework based on whole genome amplification and a dedicated computational pipeline to minimize their effects and recover as many genomes as possible. With the approaches described herein, we were able to recover 62 out of 100 samples that would have otherwise been lost. Based on these results, we discuss adjustments that should be made in official and research laboratories to facilitate the sequential implementation of bacteriological culture, PCR, downstream genomics, and computational-based methods. All of this in a time frame supporting data-driven intervention.


Asunto(s)
Coinfección , Mycobacterium bovis , Tuberculosis , Animales , Mycobacterium bovis/genética , Tuberculosis/epidemiología , Tuberculosis/veterinaria , ADN , Genómica
13.
Sci Total Environ ; 921: 170961, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367735

RESUMEN

As the COVID-19 pandemic reached its peak, many countries implemented genomic surveillance systems to track the evolution and transmission of SARS-CoV-2. Transition from the pandemic to the endemic phase prioritized alternative testing strategies to maintain effective epidemic surveillance at the population level, with less intensive sequencing efforts. One such promising approach was Wastewater-Based Surveillance (WBS), which offers non-invasive, cost-effective means for analysing virus trends at the sewershed level. From 2020 onwards, wastewater has been recognized as an instrumental source of information for public health, with national and international authorities exploring options to implement national wastewater surveillance systems and increasingly relying on WBS as early warning of potential pathogen outbreaks. In Portugal, several pioneer projects joined the academia, water utilities and Public Administration around WBS. To validate WBS as an effective genomic surveillance strategy, it is crucial to collect long term performance data. In this work, we present one year of systematic SARS-CoV-2 wastewater surveillance in Portugal, representing 35 % of the mainland population. We employed two complementary methods for lineage determination - allelic discrimination by RT-PCR and S-gene sequencing. This combination allowed us to monitor variant evolution in near-real-time and identify low-frequency mutations. Over the course of this year-long study, spanning from May 2022 to April 2023, we successfully tracked the dominant Omicron sub-lineages, their progression and evolution, which aligned with concurrent clinical surveillance data. Our results underscore the effectiveness of WBS as a tracking system for virus variants, with the ability to unveil mutations undetected via massive sequencing of clinical samples from Portugal, demonstrating the ability of WBS to uncover new mutations and detect rare genetic variants. Our findings emphasize that knowledge of the genetic diversity of SARS-CoV-2 at the population level can be extended far beyond via the combination of routine clinical genomic surveillance with wastewater sequencing and genotyping.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Portugal/epidemiología , Aguas Residuales , Pandemias , Monitoreo Epidemiológico Basado en Aguas Residuales , Mutación
14.
Environ Pollut ; 343: 123272, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160777

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of paratuberculosis, a chronic infection affecting ruminants and other species worldwide. Information on the ecological factors that increase infection risk at the livestock-wildlife-environment interface remains scarce. Thus, this work aimed at determining which factors modulate the exposure of a mammal community within a Mediterranean agro-forestry farmstead to MAP. Through field, molecular and ecological modeling approaches, MAP prevalence, distribution and spatial risk at the livestock-wildlife-environment was estimated in the study area by screening 436 samples (cattle, n = 150; wildlife, n = 206; soil, n = 80). Using molecular detection of IS900 as proxy, MAP was identified in ten wild mammal species. Being a central prey of mesocarnivores in Portugal, the high prevalence of MAP in the wild rabbit (19%) may be related with red fox's (22%). MAP was also detected in cattle managed in the farmstead (animal and herd prevalence, 54% and 100%) and in soil (44%), which may perpetuate intraspecies and interspecies transmission. Wildlife diversity showed a positive influence on MAP presence in wild mammals, while wildlife abundance showed a negative effect. Land use variables exerted distinct degrees of impact upon MAP detection in specific groups of mammals: mixed forest cover showed positive influence on carnivores, and shrubland showed positive effect on wild rabbits. The prevalence of MAP in cattle showed a negative influence on the detection of MAP in lagomorph, which may stem from wild rabbit lower density and avoidance of cattle areas. Based on explanatory variables, the spatial prediction of MAP occurrence in wildlife indicated two hotspots with increased exposure risk but future studies are needed to confirm this projection. This work represents the most comprehensive molecular survey of MAP occurrence and determinants in Mediterranean agroecosystems leveraging the principles and tools of community ecology, debating potential biological and ecological effects underlying MAP transmission.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos , Conejos , Animales Salvajes , Ganado , Agricultura Forestal , Paratuberculosis/epidemiología , Paratuberculosis/microbiología , Mamíferos , Suelo , Heces/microbiología
15.
Emerg Microbes Infect ; 12(2): 2253340, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37640285

RESUMEN

ABSTRACTAnimal tuberculosis (TB) remains a serious concern for animal and human health. Mycobacterium bovis circulates in multi-host systems, dominated by the European 2 clonal complex (Eu2) in Iberia. In this work, we use genomic epidemiology to infer the emergence, spread, and spatiotemporal patterns of Eu2 in the official epidemiological risk area of animal TB in Portugal. Phylogenetic analysis of 144 M. bovis whole-genome sequences from cattle, wild boar, and red deer, representing the 2002-2021 period, distinguished three Eu2 clades that evolved independently. The major Eu2 clade underwent phylodynamic inferences to estimate the time and location of outbreaks, host transitions, and spatial diffusion as well. The origin of this Eu2 clade was attributed to the red deer population in the Castelo Branco district, near the border with Spain. Most host transitions were intraspecific (80%), while interspecific transmissions between wildlife species (wild boar-red deer), and between wild boar and cattle, were highly supported. Phylogeographic reconstruction evidenced that most transitions (82%) occur within municipalities, highlighting local transmission corridors.Our study indicates that M. bovis continues to spread at the cattle-wildlife interface within the animal TB hotspot area, possibly driven by the foraging behaviour of wild boar near agricultural lands. Red deer seems to be an important driver of TB within wildlife hosts, while the wild boar links the multi-host wildlife community and livestock. This work highlights the value of combining genomic epidemiology with phylodynamic inference to resolve host jumps and spatial patterns of M. bovis, providing real-time clues about points of intervention.


Asunto(s)
Mycobacterium bovis , Tuberculosis Bovina , Tuberculosis , Animales , Bovinos , Sus scrofa , Ciervos , Tuberculosis/epidemiología , Tuberculosis/microbiología , Tuberculosis/transmisión , Tuberculosis/veterinaria , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología , Tuberculosis Bovina/transmisión , Portugal/epidemiología , Filogenia
16.
J Hazard Mater Adv ; 10: 100315, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37193121

RESUMEN

The COVID-19 pandemic caused by the SARS-CoV-2 virus led to changes in the lifestyle and human behaviour, which resulted in different consumption patterns of some classes of pharmaceuticals including curative, symptom-relieving, and psychotropic drugs. The trends in the consumption of these compounds are related to their concentrations in wastewater systems, since incompletely metabolised drugs (or their metabolites back transformed into the parental form) may be detected and quantified by analytical methods. Pharmaceuticals are highly recalcitrant compounds and conventional activated sludge processes implemented in wastewater treatment plants (WWTP) are ineffective at degrading these substances. As a results, these compounds end up in waterways or accumulate in the sludge, being a serious concern given their potential effects on ecosystems and public health. Therefore, it is crucial to evaluate the presence of pharmaceuticals in water and sludge to assist in the search for more effective processes. In this work, eight pharmaceuticals from five therapeutic classes were analysed in wastewater and sludge samples collected in two WWTP located in the Northern Portugal, during the third COVID-19 epidemic wave in Portugal. The two WWTP demonstrated a similar pattern with respect to the concentration levels in that period. However, the drugs loads reaching each WWTP were dissimilar when normalising the concentrations to the inlet flow rate. Acetaminophen (ACET) was the compound detected at highest concentrations in aqueous samples of both WWTP (98. 516 µg L - 1 in WWTP2 and 123. 506 µg L - 1in WWTP1), indicating that this drug is extensively used without the need of a prescription, known of general public knowledge as an antipyretic and analgesic agent to treat pain and fever. The concentrations determined in the sludge samples were below 1.65 µg g - 1 in both WWTP, the highest value being found for azithromycin (AZT). This result may be justified by the physico-chemical characteristics of the compound that favour its adsorption to the sludge surface through ionic interactions. It was not possible to establish a clear relationship between the incidence of COVID-19 cases in the sewer catchment and the concentration of drugs detected in the same period. However, looking at the data obtained, the high incidence of COVID-19 in January 2021 is in line with the high concentration of drugs detected in the aqueous and sludge samples but prediction of drug load from viral load data was unfeasible.

17.
Sci Total Environ ; 891: 164366, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245818

RESUMEN

Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTBC), circulates in multi-host mammal communities. While interactions between different host species are mainly indirect, current knowledge postulates interspecific transmission is favored by animal contact with natural substrates contaminated with droplets and fluids from infected animals. However, methodological constraints have severely hampered monitoring of MTBC outside its hosts and the subsequent validation of this hypothesis. In this work, we aimed to evaluate the extent to which environmental contamination with M. bovis occurs in an endemic animal TB setting, taking advantage of a new real-time monitoring tool we recently developed to quantify the proportion of viable and dormant MTBC cell fractions in environmental matrices. Sixty-five natural substrates were collected nearby the International Tagus Natural Park region, in the epidemiological TB risk area in Portugal. These included sediments, sludge, water, and food deployed at unfenced feeding stations. The tripartite workflow included detection, quantification, and sorting of different M. bovis cell populations: total, viable, and dormant. Real-time PCR targeting IS6110 to detect MTBC DNA was performed in parallel. The majority of samples (54 %) contained metabolically active or dormant MTBC cells. Sludge samples had a higher burden of total MTBC cells and a high concentration of viable cells (2.3 × 104 cells/g). Ecological modelling informed by climate, land use, livestock and human disturbance data suggested eucalyptus forest and pasture cover as potential major factors affecting the occurrence of viable MTBC cells in natural matrices. Our study demonstrates, for the first time, the widespread environmental contamination of animal TB hotspots with viable MTBC bacteria and with dormant MTBC cells that are able to recover metabolic activity. Further, we show that viable MTBC cell load in natural substrates is superior to the estimated minimum infective dose, providing real-time insights into the potential magnitude of environmental contamination for indirect TB transmission.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Mycobacterium tuberculosis/genética , Citometría de Flujo , Aguas del Alcantarillado , Reacción en Cadena en Tiempo Real de la Polimerasa , Mamíferos
18.
Vet Parasitol Reg Stud Reports ; 34: 100759, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36041795

RESUMEN

Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are among the most relevant zoonoses in Europe. According to the European Food Safety Authority (EFSA), Echinococcus granulosus sensu lato causing CE is the most significant foodborne parasite in South-Western Europe, followed by Echinococcus multilocularis, the etiological agent of AE. Among the challenges and opportunities highlighted in the literature to combat these diseases are the need to evaluate and increase awareness of stakeholders. In Portugal, Municipal Veterinary Practitioners (MVP) are the animal health authority at the municipality level, playing a crucial role in diagnosis, prevention and control of infectious diseases in animals, helping to mitigate transmission to humans. However, their knowledge, attitudes, and practices (KAP) towards CE, as well as awareness of AE expansion across Europe, remain overlooked. In this work, a cross-sectional study was conducted for the first time in Portugal to bridge knowledge gaps concerning CE and AE, using an online self-administered questionnaire collecting information on the municipal kennel, KAP towards CE, and understanding of AE epidemiology. Eighty-three MVP from mainland and islands completed the questionnaire, with highest representability from the central-northern region. MVP had, on average, a medium to high level of knowledge of CE but acquaintance with AE was insufficient, although echinococcosis was frequently mentioned as target of health education sessions (77.0%). A high rate (60%) of reported entries into municipal kennels of stray dogs originating from countries with AE endemic areas was registered, suggesting that the presence of these potentially AE-infected stray dogs pose public health risks. Most kennels did not perform routine coprological analysis or faecal matter disinfection after dog internal deworming. The lack of proper training and well-conceived written plans of infection control and prevention were evidenced in several kennels. Altogether, our findings highlight the need to update knowledge and practice of MVP under the One Health approach, through reinforced education, training and communication involving all stakeholders.


Asunto(s)
Enfermedades de los Perros , Equinococosis , Animales , Estudios Transversales , Enfermedades de los Perros/parasitología , Perros , Equinococosis/epidemiología , Equinococosis/prevención & control , Equinococosis/veterinaria , Conocimientos, Actitudes y Práctica en Salud , Humanos , Prevalencia
19.
Environ Pollut ; 306: 119367, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35489528

RESUMEN

Extended-spectrum ß-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX-M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health.


Asunto(s)
Ciervos , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Antibacterianos/farmacología , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , beta-Lactamasas/genética
20.
Sci Total Environ ; 829: 154699, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35318052

RESUMEN

Pseudomonas aeruginosa is a ubiquitous bacterium, successfully exploiting a variety of environmental niches due to its remarkable metabolic versatility. The World Health Organization classifies P. aeruginosa as a "priority pathogen" due to its a great ability to overcome the action of antimicrobials, including carbapenems. Hitherto, most studies have focused on clinical settings from humans, but much less on animal and environmental settings, particularly on wildlife. In this work, we report the isolation of a carbapenem-resistant Pseudomonas aeruginosa strain recovered from the faeces of a red deer adult female sampled in a humanized area. This isolate was obtained during a nationwide survey on antimicrobial resistance in wildlife aimed to determine the occurrence of carbapenem-resistant bacteria among 181 widely distributed wild ungulates. This P. aeruginosa isolate was found to be a high-risk clone, belonging to the sequence type (ST) 274. The genomic analysis of P. aeruginosa isolate UP4, classified this isolate as belonging to serogroup O3, which was also found to harbour the genes blaPAO, blaPDC-24, blaOXA-486 (encoding resistance to beta-lactams), aph(3')-IIb (aminoglycosides resistance), fosA (fosfomycin resistance) and catB7 (chloramphenicol resistance). Antimicrobial susceptibility screening, according to EUCAST, showed resistance to imipenem and intermediate resistance to meropenem and doripenem. To our knowledge, this is the first description of carbapenem-resistant P. aeruginosa in deer in Europe. Our results highlight the importance of wild ungulates either as victims of human activity or amplifiers of AMR, either way with potential impacts on animal, human and ecosystem health, since excretion of AMR bacteria might directly or indirectly contaminate other animals and the surrounding environment, perpetuating the spill-over and chain dissemination of AMR determinants.


Asunto(s)
Ciervos , Infecciones por Pseudomonas , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Carbapenémicos/metabolismo , Carbapenémicos/farmacología , Células Clonales , Ecosistema , Femenino , Pruebas de Sensibilidad Microbiana , Portugal , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/veterinaria , Pseudomonas aeruginosa/metabolismo , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA