Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1081056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077354

RESUMEN

Introduction: Resistance exercise can significantly increase serum steroid concentrations after an exercise bout. Steroid hormones are involved in the regulation of several important bodily functions (e.g., muscle growth) through both systemic delivery and local production. Thus, we aimed to determine whether resistance exercise-induced increases in serum steroid hormone concentrations are accompanied by enhanced skeletal muscle steroid concentrations, or whether muscle contractions per se induced by resistance exercise can increase intramuscular steroid concentrations. Methods: A counterbalanced, within-subject, crossover design was applied. Six resistance-trained men (26 ± 5 years; 79 ± 8 kg; 179 ± 10 cm) performed a single-arm lateral raise exercise (10 sets of 8 to 12 RM - 3 min rest between sets) targeting the deltoid muscle followed by either squat exercise (10 sets of 8 to 12 RM - 1 min rest) to induce a hormonal response (high hormone [HH] condition) or rest (low hormone [LH] condition). Blood samples were obtained pre-exercise and 15 min and 30 min post-exercise; muscle specimens were harvested pre-exercise and 45 min post-exercise. Immunoassays were used to measure serum and muscle steroids (total and free testosterone, dehydroepiandrosterone sulfate, dihydrotestosterone, and cortisol; free testosterone measured only in serum and dehydroepiandrosterone only in muscle) at these time points. Results: In the serum, only cortisol significantly increased after the HH protocol. There were no significant changes in muscle steroid concentrations after the protocols. Discussion: Our study provides evidence that serum steroid concentration increases (cortisol only) seem not to be aligned with muscle steroid concentrations. The lack of change in muscle steroid after protocols suggests that resistance-trained individuals were desensitized to the exercise stimuli. It is also possible that the single postexercise timepoint investigated in this study might be too early or too late to observe changes. Thus, additional timepoints should be examined to determine if RE can indeed change muscle steroid concentrations either by skeletal muscle uptake of these hormones or the intramuscular steroidogenesis process.


Asunto(s)
Hidrocortisona , Músculo Esquelético , Humanos , Masculino , Dihidrotestosterona , Músculo Esquelético/fisiología , Esteroides , Testosterona , Estudios Cruzados
2.
Lung Cancer Manag ; 12(4): LMT63, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38239811

RESUMEN

Aim: To summarize current knowledge, gaps, quality of the evidence and show main results related to the role of the autonomic nervous system in lung cancer. Methods: Studies were identified through electronic databases (PubMed, Scopus, Embase and Cochrane Library) in October 2023, and a descriptive analysis was performed. Twenty-four studies were included, and most were observational. Results: Our data indicated an increased expression of ß-2-adrenergic receptors in lung cancer, which was associated with poor prognosis. However, the use of ß-blockers as an add-on to standard treatment promoted enhanced overall survival, recurrence-free survival and reduced metastasis occurrence. Conclusion: Although the results herein seem promising, future research using high-quality prospective clinical trials is required to draw directions to guide clinical interventions.


Lung cancer is one of the most common causes of cancer-related deaths in the world, which often goes undiagnosed until it is in an advanced stage. Recently, the autonomic nervous system (sympathetic and parasympathetic nervous systems) has been identified as a regulator of cancer growth and spread, including lung cancer. In fact, preclinical studies have demonstrated that autonomic innervation in lung cancer can trigger tumor progression, metastasis, and resistance to treatment, worsening the prognosis. In this sense, add-on strategies to standard cancer treatments have been investigating and one of them has stood out: the incidental use of ß-blockers (patients who used ß-blockers for the treatment of hypertension and/or cardiovascular diseases or anxiety) before surgeries or during chemotherapy, which has been associated with improved clinical outcomes. Thus, a scoping review was conducted to summarizing the current knowledge about the quality of evidence, gaps and main results related to the role of the autonomic nervous system in human lung cancer. Data from this review indicated an increase in sympathetic nervous system receptors associated with a worse prognosis in patients with lung cancer. Indeed, those patients who took ß-blockers along with lung cancer treatment showed an increase in survival and a reduction in the occurrence of metastases. Although the results herein seem promising, further prospective clinical studies are needed to investigate the effect of the intentional and controlled use of ß-blockers as an add-on strategy on the treatment of different types and stages of lung cancer.

3.
J Appl Physiol (1985) ; 122(4): 817-827, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28104751

RESUMEN

We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF.NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen species production and systemic inflammation, which diminish NF-κB overactivation, p38 phosphorylation, and ubiquitin proteasome system hyperactivity. These molecular changes counteract plantaris atrophy in trained myocardial infarction-induced heart failure rats. Our data provide new evidence into how AET may regulate protein degradation and thus prevent skeletal muscle atrophy.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , NADPH Oxidasas/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Modelos Animales de Enfermedad , Prueba de Esfuerzo/métodos , Corazón/fisiología , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , FN-kappa B/metabolismo , Oxidación-Reducción , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Int J Cardiol ; 214: 137-47, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27060274

RESUMEN

BACKGROUND: Exercise intolerance is one of the main clinical symptoms of heart failure (HF) and is associated with skeletal muscle wasting due to an imbalance between proteolysis and protein synthesis. In this study, we tested whether aerobic exercise training (AET) would counteract skeletal muscle atrophy by activating IGF-I/Akt/mTOR pathway in HF mice. METHODS: Sympathetic hyperactivity induced HF mice were assigned into 8-week moderate intensity AET. Untrained wild type and HF mice were used as control. Soleus cross sectional area was evaluated by histochemistry and motor performance by rotarod. 26S proteasome activity was assessed by fluorimetric assay, and components of IGF-I/Akt/mTOR pathway or myostatin pathway by qRT-PCR or immunoblotting. A different subset of mice was used to evaluate the relative contribution of mTOR inhibition (rapamycin) or activation (leucine) on AET-induced changes in muscle mass regulation. RESULTS: AET prevented exercise intolerance and impaired motor performance in HF mice. These effects were associated with attenuation of soleus atrophy. Rapamycin treatment precluded AET effects on soleus mass in HF mice suggesting the involvement of IGF signaling pathway in this response. In fact, AET increased IGF-I Ea and IGF-I Pan mRNA levels, while it reduced myostatin and Smad2 mRNA levels in HF mice. At protein levels, AET prevented reduced expression levels of IGF-I, pAkt (at basal state), as well as, p4E-BP1 and pP70(S6K) (leucine-stimulated state) in HF mice. Additionally, AET prevented 26S proteasome hyperactivity in HF mice. CONCLUSIONS: Taken together, our data provide evidence for AET-induced activation of IGF-I/Akt/mTOR signaling pathway counteracting HF-induced muscle wasting.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Condicionamiento Físico Animal/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Insuficiencia Cardíaca/terapia , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Atrofia Muscular/prevención & control , Condicionamiento Físico Animal/métodos , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
5.
Oxid Med Cell Longev ; 2016: 4374671, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26904163

RESUMEN

Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and ß-adrenergic receptor blockade (ß-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with ß-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.


Asunto(s)
Ejercicio Físico/fisiología , Insuficiencia Cardíaca/tratamiento farmacológico , Músculo Esquelético/patología , Enfermedades Musculares/tratamiento farmacológico , Animales , Insuficiencia Cardíaca/complicaciones , Humanos , Modelos Biológicos , Enfermedades Musculares/complicaciones
6.
J Sports Sci Med ; 13(3): 597-603, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25177187

RESUMEN

This case report assessed quality of life, activities of daily living, motor symptoms, functional ability, neuromuscular parameters and mRNA expression of selected genes related to muscle protein synthesis and degradation in a patient with Multiple System Atrophy (MSA). The patient underwent resistance training with instability devices (i.e., bosu, dyna disk, balance disk, Swiss ball) for six months twice a week. After the six months training, the patient's left and right quadriceps muscle cross-sectional area and leg press one-repetition maximum increased 6.4%, 6.8%, and 40%, respectively; the patient's timed up and go, sit to stand, dynamic balance, and activities of daily living improved 33.3%, 28.6%, 42.3%, and 40.1%, respectively; the patient's severity of motor symptoms and risk of falls decreased 32% and 128.1%, respectively. Most of the subscales of quality of life demonstrated improvements as well, varying from 13.0% to 100.0%. mRNA expression of mechanogrowth factor and mammalian target of rapamycin increased 12.7-fold and 1.5-fold, respectively. This case report describes likely the first nonpharmacological therapeutic tool that might be able to decrease the severity of motor symptoms and risk of falls, and to improve functional ability, neuromuscular parameters, and quality of the life in a patient with MSA. Key pointsSix months of resistance training with instability alleviate the MSA-related effects and improve the quality of life in a patient with MSA.High complexity exercise intervention (i.e., resistance training with instability) may be very beneficial to individuals with impaired motor control and function as MSA patients.Caution should be exercised when interpreting our findings as they cannot be generalized to the entire MSA population and they do not allow establishing causal conclusions on the effects of this mode of exercise on MSA.

7.
PLoS One ; 8(5): e62452, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658728

RESUMEN

The use of ß-blockers is mandatory for counteracting heart failure (HF)-induced chronic sympathetic hyperactivity, cardiac dysfunction and remodeling. Importantly, aerobic exercise training, an efficient nonpharmacological therapy to HF, also counteracts sympathetic hyperactivity in HF and improves exercise tolerance and cardiac contractility; the latter associated with changes in cardiac Ca(2+) handling. This study was undertaken to test whether combined ß-blocker and aerobic exercise training would integrate the beneficial effects of isolated therapies on cardiac structure, contractility and cardiomyocyte Ca(2+) handling in a genetic model of sympathetic hyperactivity-induced HF (α2A/α2C- adrenergic receptor knockout mice, KO). We used a cohort of 5-7 mo male wild-type (WT) and congenic mice (KO) with C57Bl6/J genetic background randomly assigned into 5 groups: control (WT), saline-treated KO (KOS), exercise trained KO (KOT), carvedilol-treated KO (KOC) and, combined carvedilol-treated and exercise-trained KO (KOCT). Isolated and combined therapies reduced mortality compared with KOS mice. Both KOT and KOCT groups had increased exercise tolerance, while groups receiving carvedilol had increased left ventricular fractional shortening and reduced cardiac collagen volume fraction compared with KOS group. Cellular data confirmed that cardiomyocytes from KOS mice displayed abnormal Ca(2+) handling. KOT group had increased intracellular peak of Ca(2+) transient and reduced diastolic Ca(2+) decay compared with KOS group, while KOC had increased Ca(2+) decay compared with KOS group. Notably, combined therapies re-established cardiomyocyte Ca(2+) transient paralleled by increased SERCA2 expression and SERCA2:PLN ratio toward WT levels. Aerobic exercise trained increased the phosphorylation of PLN at Ser(16) and Thr(17) residues in both KOT and KOCT groups, but carvedilol treatment reduced lipid peroxidation in KOC and KOCT groups compared with KOS group. The present findings provide evidence that the combination of carvedilol and aerobic exercise training therapies lead to a better integrative outcome than carvedilol or exercise training used in isolation.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carbazoles/farmacología , Terapia por Ejercicio , Insuficiencia Cardíaca/terapia , Contracción Miocárdica , Propanolaminas/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Presión Sanguínea , Señalización del Calcio , Carbazoles/uso terapéutico , Carvedilol , Células Cultivadas , Terapia Combinada , Evaluación Preclínica de Medicamentos , Tolerancia al Ejercicio , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Condicionamiento Físico Animal , Propanolaminas/uso terapéutico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Remodelación Ventricular
8.
PLoS One ; 7(8): e41701, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870245

RESUMEN

BACKGROUND: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. METHODS/PRINCIPAL FINDINGS: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7(th) month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. CONCLUSIONS: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.


Asunto(s)
Terapia por Ejercicio , Proteínas Musculares/metabolismo , Atrofia Muscular , Estrés Oxidativo , Condicionamiento Físico Animal , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Femenino , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Humanos , Peroxidación de Lípido/genética , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Atrofia Muscular/etiología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Atrofia Muscular/terapia , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética
9.
J Appl Physiol (1985) ; 112(11): 1839-46, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22461440

RESUMEN

Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.


Asunto(s)
Calpaína/biosíntesis , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Complejo de la Endopetidasa Proteasomal/biosíntesis , Ubiquitina/biosíntesis , Regulación hacia Arriba/fisiología , Animales , Prueba de Esfuerzo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/enzimología , Condicionamiento Físico Animal/métodos
10.
PLoS One ; 7(12): e52764, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300764

RESUMEN

Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca²âº-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.


Asunto(s)
Terapia por Ejercicio , Insuficiencia Cardíaca/terapia , Proteínas Musculares/fisiología , Miocardio/metabolismo , Aldehídos/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Insuficiencia Cardíaca/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oligopéptidos/farmacología , Oxidación-Reducción , Estrés Oxidativo , Consumo de Oxígeno , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Procesamiento Proteico-Postraduccional , Ratas , Ratas Wistar , Carrera
11.
Rev. bras. med. esporte ; 15(4): 260-263, jul.-ago. 2009. ilus
Artículo en Portugués | LILACS | ID: lil-526425

RESUMEN

O aumento da atividade nervosa simpática e a taquicardia em repouso ou durante esforços físicos estão associados ao aumento da morbimortalidade, mesmo na ausência de sinais clínicos de doença cardíaca. Sabendo-se da importância dos receptores α2A/α2C-adrenérgicos na modulação da atividade nervosa e frequência cardíaca (FC), o presente trabalho utiliza um modelo genético de cardiomiopatia induzida por excesso de catecolaminas circulantes baseado na inativação gênica dos receptores α2A/α2C-adrenérgicos em camundongos (α2A/α2CKO) para verificar a resposta da FC ao exercício físico (EF), assim como o controle simpatovagal da FC ao EF. Testou-se a hipótese de que haveria resposta taquicárdica exacerbada durante o EF nos camundongos α2A/α2CKO mesmo quando a função cardíaca ainda estivesse preservada em repouso, sendo o receptor α2A-adrenérgico o principal responsável por essa resposta. Camundongos machos da linhagem C57Bl6J, controle (CO) e com inativação gênica para os receptores α2A (α2AKO), α2C α2CKO) e α2A/α2CKO foram submetidos a um teste de tolerância ao esforço físico. Outros dois grupos de camundongos, CO e α2A/α2CKO, foram submetidos ao bloqueio farmacológico dos receptores muscarínicos e β-adrenérgicos e ao EF progressivo para se avaliar a contribuição simpatovagal para a taquicardia de EF. Observou-se intolerância ao esforço físico (1.220 ± 18 e 1.460 ± 34 vs. 2.630 ± 42m, respectivamente) e maior taquicardia ao EF (765 ± 16 e 792 ± 13 vs. 603 ± 18bpm, respectivamente) nos camundongos α2AKO e α2A/α2CKO vs. CO. Além disso, o balanço autonômico estava alterado nos camundongos α2A/α2CKO pela hiperatividade simpática e menor efeito vagal cardíaco. Esses resultados demonstram a importância dos receptores α2A/α2C-adrenérgicos no controle autonômico não só no repouso, mas também durante o EF, sendo o receptor ...


Increase of sympathetic nervous activity and tachycardia at rest or during physical exertions are associated with increase of morbimortality, even in the absence of clinical signs of cardiac disease. Considering the importance of the α2A/α2C-adrenergic receptors in the modulation of the nervous activity and heart rate (HR), the present study uses a genetic model of cardiomyopathy induced by excess of circulating catecholamine in the gene inactivation of the α2A/α2 -adrenergic receptors in mice (α2A/α2CKO) to verify the HR response to physical exercise (PE), as well as the sympathetic-vagal control of the HR to PE. The hypothesis is that there would be exacerbated tachycardic response during PE in α2A/α2CKO mice even when the cardiac function was still preserved at rest, being the α2A-adrenergic receptor the main reason for this response. Male mice of the C57Bl6J lineage, control (CO) and with gene inactivation for the a2A (α2AKO), α2C α2CKO) and α2A/α2CKO receptors were submitted to tolerance to a physical exercise test. Two other groups of mice, CO and α2A/α2CKO, were submitted to pharmacological blocking of the muscarinic and β-adrenergic receptors as well as to progressive PE to assess the sympathetic-vagal contribution to PE tachycardia. Intolerance to physical exercise (1.220 ± 18 and 1.460 ± 34 vs. 2.630 ± 42m, respectively) and higher tachycardia to PE (765 ± 16 e 792 ± 13 vs. 603 ± 18 bpm, respectively) in the α2AKO and α2A/α2CKO vs. CO mice was observed. Moreover, the autonomic balance was altered in the α2A/α2CKO mice by the sympathetic hyperactivity and lower cardiac vagal effect. These outcomes demonstrated the importance of the α2A/α2C-adrenergic receptors in autonomic control not only at rest, but also during PE, being theα2A-adrenergic receptor responsible for the sympathetic hyperactivity and lower ...


Asunto(s)
Animales , Masculino , Cardiomiopatías/inducido químicamente , Catecolaminas/efectos adversos , Modelos Animales de Enfermedad , Ejercicio Físico , Frecuencia Cardíaca , Frecuencia Cardíaca/genética , Condicionamiento Físico Animal , Descanso , /genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...