Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 61: 582-592, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28089401

RESUMEN

A field study was established to assess the effects of a sewage sludge (SS), a mixed municipal solid waste compost (MMSWC) and a compost produced from agricultural wastes (AWC), in a Vertisol, using Lolium multiflorum L. The amendments were applied for two consecutive years: 6, 12 and 24t dry matter ha-1 for SS, and the amendment doses for MMSWC and AWC were calculated to deliver the same amount of organic matter (OM) per unit area. The amendments had significant beneficial effects on some soil properties (e.g. soil OM, NKjeldahl, extractable P and K), and on plant productivity parameters (e.g. biomass yield, chlorophyll, foliar area). For instance, soil OM increased from 0.78% to 1.71, 2.48 and 2.51%, after two consecutive years of application of 24t dry matter ha-1 of SS, MMSWC and AWC, respectively, while the plant biomass obtained increased from 7.75tha-1 to 152.41, 78.14 and 29.26tha-1, for the same amendments. On the plant, effects were more pronounced for SS than for both compost applications, a consequence of its higher capacity to provide N to the plant in a readily available form. However, after two years of application, the effects on soil properties were more noticeable for both composts, as their OM is more resistant to mineralization, which endures their beneficial effects on soil. Cadmium, Cr, Ni and Pb pseudo-total concentrations, were not affected significantly by the application of the organic wastes to soil, in all tested doses, neither their extractability by 0.01M CaCl2. On the contrary, Cu and Zn pseudo-total concentrations increased significantly in the second year of the experiment, following the application of the higher rate of MMSWC and AWC, although their extractability remained very low (<0.5% of their pseudo-total fraction). Trace elements concentrations in the aboveground plant material were lower than their maximum tolerable levels for cattle, used as an indicator of risk of their entry into the human food chain. Despite these results, it is interesting to note that the SS promoted a significant increase in the foliar concentrations of Cu, Ni and Zn that did not happen in composts application, which can be explained by the reduction of the soil pH, as a consequence of SS degradation in soil. Concluding, if this type of organic wastes were to be used in a single application, the rate could be as high as 12 or even 24tha-1, however, if they are to be applied in an annual basis, the application rates should be lowered to assure their safe application (e.g. to 6tha-1). Moreover, it is advisable to use more stable and mature organic wastes, which have longer lasting positive effects on soil characteristics.


Asunto(s)
Aguas del Alcantarillado , Contaminantes del Suelo/análisis , Suelo , Administración de Residuos/métodos , Agricultura/métodos , Lolium/crecimiento & desarrollo , Metales/análisis , Hojas de la Planta/química , Portugal , Reciclaje , Medición de Riesgo , Suelo/química , Residuos Sólidos
2.
J Environ Qual ; 39(1): 168-75, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20048304

RESUMEN

We evaluated the use of polyacrylate polymers to aid phytostabilization of mine soils. In a pot experiment, perennial ryegrass was grown in a mine soil and in uncontaminated soil. Growth was stimulated in the polymer-amended mine soil compared with an unamended control, and water-extractable levels of soil Cu and Zn decreased after polymer application. In an experiment performed in six 60-cm-diameter cylinders filled with fertilized mine soil, polymers were applied to three cylinders, with the remainder used as unamended control. Total biomass produced by indigenous plant species sown in polymer-amended soil was 1.8 (Spring-Summer) or 2.4 times (Fall-Winter) greater than that of plants from unamended soil. The application of polymers to the mine soil led to the greatest activity of soil enzymes. Soil pH, biomass of Spergularia purpurea and Chaetopogon fasciculatus, and activities of protease and cellulase had large loadings on principal component (PC)1, whereas growth of Briza maxima and the activities of urease, acid phosphatase, and beta-glucosidase had large loadings on PC2. The treatments corresponding to controls were located on the negative side of PC1 and PC2. Amended treatments were on the positive side of PC2 (Spring-Summer) or on the positive side of PC1 (Fall-Winter), demonstrating differential responses of plants and soil parameters in the two growth cycles.


Asunto(s)
Acrilatos/química , Biodegradación Ambiental , Desarrollo de la Planta , Polímeros/química , Suelo/análisis , Monitoreo del Ambiente , Residuos Industriales , Minería , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...