Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS One ; 19(2): e0297618, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422111

RESUMEN

Microindentation of fresh biological tissues is necessary for the creation of 3D biomimetic models that accurately represent the native extracellular matrix microenvironment. However, tissue must first be precisely sectioned into slices. Challenges exist in the preparation of fresh tissue slices, as they can tear easily and must be processed rapidly in order to mitigate tissue degradation. In this study, we propose an optimised mounting condition for microindentation and demonstrate that embedding tissue in a mixture of 2.5% agarose and 1.5% gelatin is the most favourable method of tissue slice mounting for microindentation. This protocol allows for rapid processing of fresh biological tissue and is applicable to a variety of tissue types.


Asunto(s)
Biomimética , Matriz Extracelular , Alimentos , Gelatina , Prueba de Histocompatibilidad
2.
Nat Rev Urol ; 21(4): 197-213, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38102385

RESUMEN

The ureteric wall is a complex multi-layered structure. The ureter shows variation in passive mechanical properties, histological morphology and insertion forces along the anatomical length. Ureter mechanical properties also vary depending on the direction of tensile testing and the anatomical region tested. Compliance is greatest in the proximal ureter and lower in the distal ureter, which contributes to the role of the ureter as a high-resistance sphincter. Similar to other human tissues, the ureteric wall remodels with age, resulting in changes to the mechanical properties. The passive mechanical properties of the ureter vary between species, and variation in tissue storage and testing methods limits comparison across some studies. Knowledge of the morphological and mechanical properties of the ureteric wall can aid in understanding urine transport and safety thresholds in surgical techniques. Indeed, various factors alter the forces required to insert access sheaths or scopes into the ureter, including sheath diameter, safety wires and medications. Future studies on human ureteric tissue both in vivo and ex vivo are required to understand the mechanical properties of the ureter and how forces influence these properties. Testing of instrument insertion forces in humans with a focus on defining safe upper limits and techniques to reduce trauma are also needed. Last, evaluation of dilatation limits in the mid and proximal ureter and clarification of tensile strength anisotropy in human specimens are necessary.


Asunto(s)
Uréter , Humanos , Uréter/cirugía
3.
BJU Int ; 132(5): 531-540, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37656050

RESUMEN

OBJECTIVES: To evaluate the pressure range generated in the human renal collecting system during ureteroscopy (URS), in a large patient sample, and to investigate a relationship between intrarenal pressure (IRP) and outcome. PATIENTS AND METHODS: A prospective multi-institutional study was conducted, with ethics board approval; February 2022-March 2023. Recruitment was of 120 consecutive consenting adult patients undergoing semi-rigid URS and/or flexible ureterorenoscopy (FURS) for urolithiasis or diagnostic purposes. Retrograde, fluoroscopy-guided insertion of a 0.036-cm (0.014″) pressure guidewire (COMET™ II, Boston Scientific, Marlborough, MA, USA) to the renal pelvis was performed. Baseline and continuous ureteroscopic IRP was recorded, alongside relevant operative variables. A 30-day follow-up was completed. Descriptive statistics were applied to IRP traces, with mean (sd) and maximum values and variance reported. Relationships between IRP and technical variables, and IRP and clinical outcome were interrogated using the chi-square test and independent samples t-test. RESULTS: A total of 430 pressure traces were analysed from 120 patient episodes. The mean (sd) baseline IRP was 16.45 (5.99) mmHg and the intraoperative IRP varied by technique. The mean (sd) IRP during semi-rigid URS with gravity irrigation was 34.93 (11.66) mmHg. FURS resulted in variable IRP values: from a mean (sd) of 26.78 (5.84) mmHg (gravity irrigation; 12/14-F ureteric access sheath [UAS]) to 87.27 (66.85) mmHg (200 mmHg pressurised-bag irrigation; 11/13-F UAS). The highest single pressure peak was 334.2 mmHg, during retrograde pyelography. Six patients (5%) developed postoperative urosepsis; these patients had significantly higher IRPs during FURS (mean [sd] 81.7 [49.52] mmHg) than controls (38.53 [22.6] mmHg; P < 0.001). CONCLUSIONS: A dynamic IRP profile is observed during human in vivo URS, with IRP frequently exceeding expected thresholds. A relationship appears to exist between elevated IRP and postoperative urosepsis.

4.
J Mech Behav Biomed Mater ; 143: 105923, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37270901

RESUMEN

Paediatric urinary catheters are often necessary in critical care settings or to address congenital anomalies affecting the urogenital system. Iatrogenic injuries can occur during the placement of such catheters, highlighting the need for a safety device that can function in paediatric settings. Despite successful efforts to develop devices that improve the safety of adult urinary catheters, no such devices are available for use with paediatric catheters. This study investigates the potential for utilising a pressure-controlled safety mechanism to limit the trauma experienced by paediatric patients during inadvertent inflation of a urinary catheter anchoring balloon in the urethra. Firstly, we establish a paediatric model of the human urethra using porcine tissue by characterising the mechanical and morphological properties of porcine tissue at increasing postnatal timepoints (8, 12, 16 and 30 weeks). We identified that porcine urethras harvested from pigs at postnatal week 8 and 12 exhibit morphological properties (diameter and thickness) that are statistically distinct from adult porcine urethras (postnatal week 30). We therefore utilise urethra tissue from postnatal week 8 and 12 pigs as a model to evaluate a pressure-controlled approach to paediatric urinary catheter balloon inflation intended to limit tissue trauma during inadvertent inflation in the urethra. Our results show that limiting catheter system pressure to 150 kPa avoided trauma in all tissue samples. Conversely, all of the tissue samples that underwent traditional uncontrolled urinary catheter inflation experienced complete rupture. The findings of this study pave the way for the development of a safety device for use with paediatric catheters, thereby alleviating the burden of catastrophic trauma and life changing injuries in children due to a preventable iatrogenic urogenital event.


Asunto(s)
Uretra , Catéteres Urinarios , Adulto , Humanos , Niño , Porcinos , Animales , Uretra/lesiones , Cateterismo Urinario/métodos , Factores de Riesgo , Enfermedad Iatrogénica/prevención & control
5.
Regen Eng Transl Med ; 7(4): 553-547, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34805482

RESUMEN

Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell-material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of many regenerative therapies is limited due to poor material integration, rapid clearance and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell-material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, as well as the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine.

6.
ACS Nano ; 15(11): 18192-18205, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34735133

RESUMEN

Extracellular vesicles (EVs) secreted by cancer cells provide an important insight into cancer biology and could be leveraged to enhance diagnostics and disease monitoring. This paper details a high-throughput label-free extracellular vesicle analysis approach to study fundamental EV biology, toward diagnosis and monitoring of cancer in a minimally invasive manner and with the elimination of interpreter bias. We present the next generation of our single particle automated Raman trapping analysis─SPARTA─system through the development of a dedicated standalone device optimized for single particle analysis of EVs. Our visualization approach, dubbed dimensional reduction analysis (DRA), presents a convenient and comprehensive method of comparing multiple EV spectra. We demonstrate that the dedicated SPARTA system can differentiate between cancer and noncancer EVs with a high degree of sensitivity and specificity (>95% for both). We further show that the predictive ability of our approach is consistent across multiple EV isolations from the same cell types. Detailed modeling reveals accurate classification between EVs derived from various closely related breast cancer subtypes, further supporting the utility of our SPARTA-based approach for detailed EV profiling.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Femenino , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Vesículas Extracelulares/metabolismo
7.
Acta Biomater ; 135: 126-138, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34496284

RESUMEN

Cardiovascular disease is the leading cause of death worldwide, often associated with coronary artery occlusion. A common intervention for arterial blockage utilizes a vascular graft to bypass the diseased artery and restore downstream blood flow; however, current clinical options exhibit high long-term failure rates. Our goal was to develop an off-the-shelf tissue-engineered vascular graft capable of delivering a biological payload based on the monocyte recruitment factor C-C motif chemokine ligand 2 (CCL2) to induce remodeling. Bi-layered silk scaffolds consisting of an inner porous and outer electrospun layer were fabricated using a custom blend of Antherea Assama and Bombyx Mori silk (lyogel). Lyogel silk scaffolds alone (LG), and lyogel silk scaffolds containing microparticles (LGMP) were tested. The microparticles (MPs) were loaded with either CCL2 (LGMP+) or water (LGMP-). Scaffolds were implanted as abdominal aortic interposition grafts in Lewis rats for 1 and 8 weeks. 1-week implants exhibited patency rates of 50% (7/14), 100% (10/10), and 100% (5/5) in the LGMP-, LGMP+, and LG groups, respectively. The significantly higher patency rate for the LGMP+ group compared to the LGMP- group (p = 0.0188) suggests that CCL2 can prevent acute occlusion. Immunostaining of the explants revealed a significantly higher density of macrophages (CD68+ cells) within the outer vs. inner layer of LGMP- and LGMP+ constructs but not in LG constructs. After 8 weeks, there were no significant differences in patency rates between groups. All patent scaffolds at 8 weeks showed signs of remodeling; however, stenosis was observed within the majority of explants. This study demonstrated the successful fabrication of a custom blended silk scaffold functionalized with cell-mimicking microparticles to facilitate controlled delivery of a biological payload improving their in vivo performance. STATEMENT OF SIGNIFICANCE: This study outlines the development of a custom blended silk-based tissue-engineered vascular graft (TEVG) for use in arterial bypass or replacement surgery. A custom mixture of silk was formulated to improve biocompatibility and cellular binding to the tubular scaffold. Many current approaches to TEVGs include cells that encourage graft cellularization and remodeling; however, our technology incorporates a microparticle based delivery platform capable of delivering bioactive molecules that can mimic the function of seeded cells. In this study, we load the TEVGs with microparticles containing a monocyte attractant and demonstrate improved performance in terms of unobstructed blood flow versus blank microparticles. The acellular nature of this technology potentially reduces risk, increases reproducibility, and results in a more cost-effective graft when compared to cell-based options.


Asunto(s)
Prótesis Vascular , Seda , Animales , Quimiocina CCL2 , Quimiocinas , Ligandos , Ratas , Ratas Endogámicas Lew , Reproducibilidad de los Resultados , Ingeniería de Tejidos , Andamios del Tejido , Grado de Desobstrucción Vascular
8.
J Mech Behav Biomed Mater ; 119: 104516, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932753

RESUMEN

Cryopreservation is required to preserve the native properties of tissue for prolonged periods of time. In this study, we evaluate the impact that 4 different cryopreservation protocols have on porcine urethral tissue, to identify a protocol that best preserves the native properties of the tissue. The cryopreservation protocols include storage in cryoprotective agents at -20 °C and -80 °C with a slow, gradual, and fast reduction in temperature. To evaluate the effects of cryopreservation, the tissue is mechanically characterised in uniaxial tension and the mechanical properties, failure mechanics, and tissue dimensions are compared fresh and following cryopreservation. The mechanical response of the tissue is altered following cryopreservation, yet the elastic modulus from the high stress, linear region of the Cauchy stress - stretch curves is unaffected by the freezing process. To further investigate the change in mechanical response following cryopreservation, the stretch at different tensile stress values was evaluated, which revealed that storage at -20 °C is the only protocol that does not significantly alter the mechanical properties of the tissue compared to the fresh samples. Conversely, the ultimate tensile strength and the stretch at failure were relatively unaffected by the freezing process, regardless of the cryopreservation protocol. However, there were alterations to the tissue dimensions following cryopreservation that were significantly different from the fresh samples for the tissue stored at -80 °C. Therefore, any study intent on preserving the mechanical, failure, and geometric properties of urethral tissue during cryopreservation should do so by freezing samples at -20 °C, as storage at -80 °C is shown here to significantly alter the tissue properties.


Asunto(s)
Criopreservación , Animales , Módulo de Elasticidad , Congelación , Porcinos , Temperatura , Resistencia a la Tracción
9.
Bioengineering (Basel) ; 8(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925413

RESUMEN

Macromolecular components of the vascular extracellular matrix (ECM), particularly elastic fibers and collagen fibers, are critical for the proper physiological function of arteries. When the unique biomechanical combination of these fibers is disrupted, or in the ultimate extreme where fibers are completely lost, arterial disease can emerge. Bioengineers in the realms of vascular tissue engineering and regenerative medicine must therefore ideally consider how to create tissue engineered vascular grafts containing the right balance of these fibers and how to develop regenerative treatments for situations such as an aneurysm where fibers have been lost. Previous work has demonstrated that the primary cells responsible for vascular ECM production during development, arterial smooth muscle cells (SMCs), can be induced to make new elastic fibers when exposed to secreted factors from adipose-derived stromal cells. To further dissect how this signal is transmitted, in this study, the factors were partitioned into extracellular vesicle (EV)-rich and EV-depleted fractions as well as unseparated controls. EVs were validated using electron microscopy, dynamic light scattering, and protein quantification before testing for biological effects on SMCs. In 2D culture, EVs promoted SMC proliferation and migration. After 30 days of 3D fibrin construct culture, EVs promoted SMC transcription of the elastic microfibril gene FBN1 as well as SMC deposition of insoluble elastin and collagen. Uniaxial biomechanical properties of strand fibrin constructs were no different after 30 days of EV treatment versus controls. In summary, it is apparent that some of the positive effects of adipose-derived stromal cells on SMC elastogenesis are mediated by EVs, indicating a potential use for these EVs in a regenerative therapy to restore the biomechanical function of vascular ECM in arterial disease.

10.
Adv Drug Deliv Rev ; 175: 113775, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33872693

RESUMEN

Extracellular vesicles (EVs) are biological nanoparticles naturally secreted by cells, acting as delivery vehicles for molecular messages. During the last decade, EVs have been assigned multiple functions that have established their potential as therapeutic mediators for a variety of diseases and conditions. In this review paper, we report on the potential of EVs in tissue repair and regeneration. The regenerative properties that have been associated with EVs are explored, detailing the molecular cargo they carry that is capable of mediating such effects, the signaling cascades triggered in target cells and the functional outcome achieved. EV interactions and biodistribution in vivo that influence their regenerative effects are also described, particularly upon administration in combination with biomaterials. Finally, we review the progress that has been made for the successful implementation of EV regenerative therapies in a clinical setting.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/fisiología , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Humanos
11.
Biomaterials ; 269: 120651, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33476892

RESUMEN

This study addresses a crucial gap in the literature by characterising the relationship between urethral tissue mechanics, composition and gross structure. We then utilise these data to develop a biomimetic urethral scaffold with physical properties that more accurately mimic the native tissue than existing gold standard scaffolds; small intestinal submucosa (SIS) and urinary bladder matrix (UBM). Nine human urethra samples were mechanically characterised using pressure-diameter and uniaxial extension testing. The composition and gross structure of the tissue was determined using immunohistological staining. A pressure stiffening response is observed during the application of intraluminal pressure. The elastic and viscous tissue responses to extension are free of regional or directional variance. The elastin and collagen content of the tissue correlates significantly with tissue mechanics. Building on these data, a biomimetic urethral scaffold was fabricated from collagen and elastin in a ratio that mimics the composition of the native tissue. The resultant scaffold is comprised of a dense inner layer and a porous outer layer that structurally mimic the submucosa and corpus spongiosum layers of the native tissue, respectively. The porous outer layer facilitated more uniform cell infiltration relative to SIS and UBM when implanted subcutaneously (p < 0.05). The mechanical properties of the biomimetic scaffold better mimic the native tissue compared to SIS and UBM. The tissue characterisation data presented herein paves the way for the development of biomimetic urethral grafts, and the novel scaffold we develop demonstrates positive findings that warrant further in vivo evaluation.


Asunto(s)
Biomimética , Uretra , Colágeno , Humanos , Masculino , Ingeniería de Tejidos , Andamios del Tejido
13.
Int Urogynecol J ; 32(3): 573-580, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33237357

RESUMEN

BACKGROUND: The aim of this study is to systematically compare rates of erosion and chronic pain after mesh insertion for pelvic organ prolapse (POP) and stress urinary incontinence (SUI) surgery. METHODS: A systematic electronic search was performed on studies that evaluated the incidence of erosion and chronic pain after mesh insertion for POP or SUI. The primary outcome measurement was to compare mesh erosion rates for POP and SUI surgery. Secondary outcome measurements were incidence of de novo pain and a comparison of patient demographics for both surgeries. RESULTS: Twenty-six studies on 292,606 patients (n = 9077 for POP surgery and n = 283,529 for SUI surgery) met the inclusion criteria. Median follow-up was 26.38 ± 22.17 months for POP surgery and 39.33 ± 27.68 months for SUI surgery. Overall, the POP group were older (p < 0.0001) and had a lower BMI (p < 0.0001). Mesh erosion rates were significantly greater in the POP group compared to the SUI group (4% versus 1.9%) (OR 2.13; 95% CI 1.91-2.37; p < 0.0001). The duration from surgery to onset of mesh erosion was 306.84 ± 183.98 days. There was no difference in erosion rates between abdominal and transvaginal mesh for POP. There was no difference in erosion rates between the transobturator and retropubic approach for SUI. The incidence of chronic pain was significantly greater in the POP group compared to the SUI group (6.7% versus 0.6%) (OR 11.02; 95% CI 8.15-14.9; p < 0.0001). The duration from surgery to onset of chronic pain was 325.88 ± 226.31 days. CONCLUSIONS: The risk of mesh erosion and chronic pain is significantly higher after surgery for POP compared to SUI. These significant complications occur within the first year after surgery.


Asunto(s)
Dolor Crónico , Prolapso de Órgano Pélvico , Cabestrillo Suburetral , Incontinencia Urinaria de Esfuerzo , Dolor Crónico/epidemiología , Dolor Crónico/etiología , Humanos , Prolapso de Órgano Pélvico/cirugía , Cabestrillo Suburetral/efectos adversos , Mallas Quirúrgicas/efectos adversos , Incontinencia Urinaria de Esfuerzo/cirugía
14.
Front Bioeng Biotechnol ; 8: 597847, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195168

RESUMEN

Vascular tissue engineering is a field of regenerative medicine that restores tissue function to defective sections of the vascular network by bypass or replacement with a tubular, engineered graft. The tissue engineered vascular graft (TEVG) is comprised of a biodegradable scaffold, often combined with cells to prevent acute thrombosis and initiate scaffold remodeling. Cells are most effectively incorporated into scaffolds using bulk seeding techniques. While our group has been successful in uniform, rapid, bulk cell seeding of scaffolds for TEVG testing in small animals using our well-validated rotational vacuum technology, this approach was not directly translatable to large scaffolds, such as those required for large animal testing or human implants. The objective of this study was to develop and validate a semi-automated cell seeding device that allows for uniform, rapid, bulk seeding of large scaffolds for the fabrication of TEVGs appropriately sized for testing in large animals and eventual translation to humans. Validation of our device revealed successful seeding of cells throughout the length of our tubular scaffolds with homogenous longitudinal and circumferential cell distribution. To demonstrate the utility of this device, we implanted a cell seeded scaffold as a carotid interposition graft in a sheep model for 10 weeks. Graft remodeling was demonstrated upon explant analysis using histological staining and mechanical characterization. We conclude from this work that our semi-automated, rotational vacuum seeding device can successfully seed porous tubular scaffolds suitable for implantation in large animals and provides a platform that can be readily adapted for eventual human use.

15.
ACS Appl Mater Interfaces ; 12(24): 26955-26965, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32441910

RESUMEN

Vascular tissue engineering is aimed at developing regenerative vascular grafts to restore tissue function by bypassing or replacing defective arterial segments with tubular biodegradable scaffolds. Scaffolds are often combined with stem or progenitor cells to prevent acute thrombosis and initiate scaffold remodeling. However, there are limitations to cell-based technologies regarding safety and clinical translation. Extracellular vesicles (EVs) are nanosized particles released by most cell types, including stem and progenitor cells, that serve to transmit protein and RNA cargo to target cells throughout the body. EVs have been shown to replicate the therapeutic effect of their parent cells; therefore, EVs derived from stem or progenitor cells may serve as a more translatable, cell-free, therapeutic base for vascular scaffolds. Our study aims to determine if EV incorporation provides a positive effect on graft patency and remodeling in vivo. We first assessed the effect of human adipose-derived mesenchymal stem cell (hADMSC) EVs on vascular cells using in vitro bioassays. We then developed an EV-functionalized vascular graft by vacuum-seeding EVs into porous silk-based tubular scaffolds. These constructs were implanted as aortic interposition grafts in Lewis rats, and their remodeling capacity was compared to that observed for hADMSC-seeded and blank (non-seeded) controls. The EV group demonstrated improved patency (100%) compared to the hADMSC (56%) and blank controls (82%) following eight weeks in vivo. The EV group also produced significantly more elastin (126.46%) and collagen (44.59%) compared to the blank group, while the hADMSC group failed to produce significantly more elastin (57.64%) or collagen (11.21%) compared to the blank group. Qualitative staining of the explanted neo-tissue revealed improved endothelium formation, increased smooth muscle cell infiltration, and reduced macrophage numbers in the EV group compared to the controls, which aids in explaining this group's favorable pre-clinical outcomes.


Asunto(s)
Vesículas Extracelulares/química , Animales , Células Cultivadas , Exosomas/química , Humanos , Células Madre Mesenquimatosas/citología , Ratas , Seda , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
16.
Tissue Eng Part B Rev ; 26(5): 475-483, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32192400

RESUMEN

Symptomatic stress urinary incontinence (SUI) and pelvic organ prolapse (POP) refractory to conservative management with pelvic floor muscle training or vaginal pessaries may warrant surgical intervention with different forms of biologic or synthetic material. However, in recent years, several global regulatory agencies have issued health warnings and recalled several mesh products due to an increase in complications such as mesh erosion, infection, chronic pain, and perioperative bleeding. At present, current surgical treatment strategies for SUI and POP are aimed at developing biological graft materials with similar mechanical properties to established synthetic meshes, but with improved tissue integration and minimal host response. This narrative review aims to highlight recent studies related to the development of biomimetic and biologic graft materials as alternatives to traditional synthetic materials for SUI/POP repair in female patients. We also investigate complications and technical limitations associated with synthetic mesh and biological biomaterials in conventional SUI and POP surgery. Our findings demonstrate that newly developed biologic grafts have a lower incidence of adverse events compared to synthetic biomaterials. However there remains a significant disparity between success in preclinical trials and long-term clinical translation. Further characterization on the optimal structural, integrative, and mechanical properties of biological grafts is required before they can be reliably introduced into clinical practice for SUI and POP surgery. Impact statement Our review article aims to outline the clinical history of developments and controversies associated with the use of synthetic mesh materials in the surgical treatment of stress urinary incontinence and pelvic organ prolapse, as well as highlighting recent advancements in the area of biological graft materials and their potential importance in an area that remains an enduring issue for patients and clinicians alike. This article aims to provide a concise summary of previous controversies in the field of urinary incontinence, while evaluating the future of potential biomaterials in this field.


Asunto(s)
Materiales Biocompatibles/farmacología , Prolapso de Órgano Pélvico/complicaciones , Prolapso de Órgano Pélvico/terapia , Andamios del Tejido/química , Incontinencia Urinaria de Esfuerzo/complicaciones , Incontinencia Urinaria de Esfuerzo/terapia , Animales , Materiales Biocompatibles/efectos adversos , Humanos , Prolapso de Órgano Pélvico/cirugía , Andamios del Tejido/efectos adversos , Resultado del Tratamiento , Incontinencia Urinaria de Esfuerzo/cirugía
17.
Acta Biomater ; 105: 146-158, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31958596

RESUMEN

The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) - which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts' viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. STATEMENT OF SIGNIFICANCE: Clinical 'off the shelf' implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility.


Asunto(s)
Implantes Absorbibles , Implantación de Prótesis Vascular , Seda/química , Ingeniería de Tejidos , Adulto , Animales , Proliferación Celular , Matriz Extracelular/metabolismo , Femenino , Humanos , Ratas Endogámicas Lew , Resistencia a la Tracción , Andamios del Tejido/química
18.
Nanomedicine (Lond) ; 15(2): 205-214, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31916480

RESUMEN

The blood-brain barrier (BBB) has a significant contribution to homeostasis and protection of the CNS. However, it also limits the crossing of therapeutics and thereby complicates the treatment of CNS disorders. To overcome this limitation, the use of nanocarriers for drug delivery across the BBB has recently been exploited. Nanocarriers can utilize different physiological mechanisms for drug delivery across the BBB and can be modified to achieve the desired kinetics and efficacy. Consequentially, several nanocarriers have been reported to act as functional nanomedicines in preclinical studies using animal models for human diseases. Given the rapid development of novel nanocarriers, this review provides a comprehensive insight into the most recent advancements made in nanocarrier-based drug delivery to the CNS, such as the development of multifunctional nanomedicines and theranostics.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Animales , Transporte Biológico/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/patología , Humanos , Nanomedicina/tendencias , Nanopartículas , Nanomedicina Teranóstica/tendencias
19.
Int J Numer Method Biomed Eng ; 35(12): e3259, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31483945

RESUMEN

Areas of disturbed shear that develop following arteriovenous fistula (AVF) creation are believed to trigger the onset of intimal hyperplasia (IH), leading to AVF dysfunction. The presence of helical flow can suppress the flow disturbances that lead to disturbed shear in other areas of the vasculature. However, the relationship between helical flow and disturbed shear remains unevaluated in AVF. In this study, computational fluid dynamics (CFD) is used to evaluate the relationship between geometry, helical flow, and disturbed shear in parameterised models of an AVF characterised by four different anastomosis angles. The AVF models with a small anastomosis angle demonstrate the lowest distribution of low/oscillating shear and are characterised by a high helical intensity coupled with a strong balance between helical structures. Contrastingly, the models with a large anastomosis angle experience the least amount of high shear, multidirectional shear, as well as spatial and temporal gradients of shear. Furthermore, the intensity of helical flow correlates strongly with curvature (r = 0.73, P < .001), whereas it is strongly and inversely associated with taper (r = -0.87, P < .001). In summary, a flow field dominated by a high helical intensity coupled with a strong balance between helical structures can suppress exposure to low/oscillating shear but is ineffective when it comes to other types of shear. This highlights the clinical potential of helical flow as a diagnostic marker of exposure to low/oscillating shear, as helical flow can be identified in vivo with the use of ultrasound imaging.


Asunto(s)
Fístula Arteriovenosa/fisiopatología , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo , Humanos , Hidrodinámica , Flujo Pulsátil , Resistencia al Corte
20.
Matrix Biol Plus ; 4: 100014, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33543011

RESUMEN

OBJECTIVE: Elastogenesis within the medial layer of the aortic wall involves a cascade of events orchestrated primarily by smooth muscle cells, including transcription of elastin and a cadre of elastin chaperone matricellular proteins, deposition and cross-linking of tropoelastin coacervates, and maturation of extracellular matrix fiber structures to form mechanically competent vascular tissue. Elastic fiber disruption is associated with aortic aneurysm; in aneurysmal disease a thin and weakened wall leads to a high risk of rupture if left untreated, and non-surgical treatments for small aortic aneurysms are currently limited. This study analyzed the effect of adipose-derived stromal cell secreted factors on each step of the smooth muscle cell elastogenesis cascade within a three-dimensional fibrin gel culture platform. APPROACH AND RESULTS: We demonstrate that adipose-derived stromal cell secreted factors induce an increase in smooth muscle cell transcription of tropoelastin, fibrillin-1, and chaperone proteins fibulin-5, lysyl oxidase, and lysyl oxidase-like 1, formation of extracellular elastic fibers, insoluble elastin and collagen protein fractions in dynamically-active 30-day constructs, and a mechanically competent matrix after 30 days in culture. CONCLUSION: Our results reveal a potential avenue for an elastin-targeted small aortic aneurysm therapeutic, acting as a supplement to the currently employed passive monitoring strategy. Additionally, the elastogenesis analysis workflow explored here could guide future mechanistic studies of elastin formation, which in turn could lead to new non-surgical treatment strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...