Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(17): 3881-3893.e5, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127048

RESUMEN

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.


Asunto(s)
Cinetocoros , Kluyveromyces , Kluyveromyces/citología , Cinetocoros/química , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Fúngicas/análisis , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microtúbulos/metabolismo , Tomografía con Microscopio Electrónico
2.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464254

RESUMEN

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and understanding how they are arranged is key to understanding how kinetochores perform their multiple functions. However, an integrated understanding of kinetochore architecture has not yet been established. To address this, we purified functional, native kinetochores from Kluyveromyces marxianus and examined them by electron microscopy, cryo-electron tomography and atomic force microscopy. The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies, and provides the foundation to study the global architecture and functions of kinetochores at a structural level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA