Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nutrients, v.15, n. 22. 4711, nov. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5168

RESUMEN

Aim: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. Methods: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. Results: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. Conclusion: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.

2.
Clin Nutr ; 25(6): 923-38, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16697494

RESUMEN

BACKGROUND: The effect of a docosahexaenoic acid (DHA)-rich fish oil (FO) supplementation on human leukocyte function was investigated. METHODS: Ten male volunteers were supplemented with 3g/day FO containing 26% eicosapentaenoic acid (EPA, 20:5, n-3) and 54% DHA (22:6, n-3) for 2 months. RESULTS: FO supplementation changed the fatty acid (FA) composition of leukocytes resulting in an increase of n-3/n-6 ratio from 0.18 to 0.62 in lymphocytes and from 0.15 to 0.70 in neutrophils. DHA-rich FO stimulated an increase in phagocytic activity by 62% and 145% in neutrophils and monocytes, respectively. Neutrophil chemotactic response was increased by 128%. The rate of production of reactive oxygen species by neutrophils was also increased, as it was with lymphocyte proliferation. These changes were partially reversed after a 2-month wash out period. With respect to cytokine production by lymphocytes, interleukin (IL)-4 release was not altered, whereas secretions of IL-10, interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha were raised. These results are in contrast to those described by others using EPA-rich FO supplementation. Lymphocyte pleiotropic gene expression was analyzed by a macroarray technique. Of the analyzed genes (588 in total), 77 were modified by the supplementation. FO supplementation resulted in up-regulation of 6 genes (GATA binding protein 2, IL-6 signal transducer, transforming growth factor alpha, TNF, heat shock 90kDa protein 1-alpha and heat shock protein 70kDa 1A) and a down regulation of 71 genes (92.2% of total genes changed). The largest functional group of altered genes was that related to signaling pathways (22% of the total modified genes). CONCLUSIONS: Therefore, although EPA and DHA are members of n-3 FA family, changes in the proportion of DHA and EPA exert different effects on neutrophil, monocyte and lymphocyte function, which may be a result of specific changes in gene expression.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Peroxidación de Lípido/efectos de los fármacos , Linfocitos , Neutrófilos , Adulto , División Celular , Suplementos Dietéticos , Método Doble Ciego , Aceites de Pescado , Regulación de la Expresión Génica , Humanos , Interleucina-8/metabolismo , Linfocitos/química , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/fisiología , Masculino , Lípidos de la Membrana/análisis , Lípidos de la Membrana/química , Persona de Mediana Edad , Neutrófilos/química , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/fisiología , Fagocitosis , Especies Reactivas de Oxígeno , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , alfa-Tocoferol/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...