Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38396621

RESUMEN

In conserving the genetic diversity of domestic animal breeds, strategies that emphasise between-breed diversity may not be optimal, as they neglect within-breed variation. The aim of the present study was to assess the extent of population subdivision in three Mangalica pig breeds and the contribution of migration to their substructure. Wright's FST coefficient was calculated based on genealogical data with breeding animals born between 1981 and 2023, with three colour variants (Blonde, Swallow-Belly and Red). These Wright's FST coefficients were analysed using multidimensional scaling to reveal the population substructure. The average FST coefficient was 0.04 for the Blonde breed and 0.047 for the Swallow-Belly and Red Mangalica breeds, while these parameters were lower in the active herds at 0.03 and 0.04, respectively. The migration of individuals between herds was 61.63% for the Blonde breed and 75.53% and 63.64% for the Swallow-Belly and Red Magalica breeds, respectively. No population substructure was observed in any of the Mangalica breeds, which can be explained by the extensive migration between herds.

2.
J Anim Sci Biotechnol ; 14(1): 142, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932811

RESUMEN

BACKGROUND: The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS: We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS: Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.

3.
Foods ; 12(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37372505

RESUMEN

One of the salting methods in cheese production implies salting the milk before coagulation used in making Domiati-type cheeses and a variety of autochthonous "Licki Skripavac" cheese. The most used sodium replacer is potassium. This study investigated the influence of different added salt concentrations (1%, 1.5%, and 2%) and NaCl to KCl ratios (100%, 50:50%, 25:75%) on the rennet coagulation and curd firmness in bovine milk. The milk coagulation parameters were determined with a computerized renneting meter, Lactodinamograph. The results showed significant interactions between the salt concentrations and NaCl to KCl ratios (p < 0.0001, α = 0.05) by prolonging the beginning of coagulation (10-20 min) and curd firming rate (1-5 min) by an increase in salt concentration for all treatments. The 50:50 treatment values (RCT, k20, a30, a60, amax) were closest to the control (without salt) and had the best results among all treatments in the lower (1%) and medium (1.5%) salt concentration (p > 0.0001, α = 0.05) while in the highest salt concentration (2%) the treatment effect was nonsignificant (p > 0.05). These results should help future studies make a lower sodium product appealing to consumers without losing quality.

4.
Front Genet ; 13: 940736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910220

RESUMEN

A recent comprehensive genomic analysis based on 50K SNP profiles has shown that the regional Balkan sheep populations have considerable genetic overlap but are distinctly different from surrounding breeds. All eight Croatian sheep breeds were represented by a small number of individuals per breed. Here, we genotyped 220 individuals representing the native Croatian sheep breeds (Istrian Sheep, Krk Island Sheep, Cres Island Sheep, Rab Island Sheep, Lika Pramenka, Pag Island Sheep, Dalmatian Pramenka, Dubrovnik Sheep) and mouflon using the Ovine Infinium® HD SNP BeadChip (606,006 SNPs). In addition, we included publicly available Balkan Pramenka and other Mediterranean sheep breeds. Our analyses revealed the complex population structure of Croatian sheep breeds and their origin and geographic barriers (island versus mainland). Migration patterns confirmed the historical establishment of breeds and the pathways of gene flow. Inbreeding coefficients (FROH>2 Mb) between sheep populations ranged from 0.025 to 0.070, with lower inbreeding coefficients observed in Dalmatian Pramenka and Pag Island Sheep and higher inbreeding in Dubrovnik sheep. The estimated effective population size ranged from 61 to 1039 for Krk Island Sheep and Dalmatian Pramenka, respectively. Higher inbreeding levels and lower effective population size indicate the need for improved conservation management to maintain genetic diversity in some breeds. Our results will contribute to breeding and conservation strategies of native Croatian sheep breeds.

5.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683014

RESUMEN

While mitogenome mutations leading to pathological manifestations are rare, more than 200 such mutations have been described in humans. In contrast, pathogenic mitogenome mutations are rare in domestic animals and have not been described at all in cattle. In the small local Slovenian cattle breed Cika, we identified (next-generation sequencing) two cows with the T10432C mitogenome mutation in the ND4L gene, which corresponds to the human T10663C mutation known to cause Leber's hereditary optic neuropathy (LHON). Pedigree analysis revealed that the cows in which the mutation was identified belong to two different maternal lineages with 217 individual cows born between 1997 and 2020. The identified mutation and its maternal inheritance were confirmed by Sanger sequencing across multiple generations, whereas no single analysis revealed evidence of heteroplasmy. A closer clinical examination of one cow with the T10432C mutation revealed exophthalmos, whereas histopathological examination revealed retinal ablations, subretinal oedema, and haemorrhage. The results of these analyses confirm the presence of mitochondrial mutation T10432C with homoplasmic maternal inheritance as well as clinical and histopathological signs similar to LHON in humans. Live animals with the mutation could be used as a suitable animal model that can improve our understanding of the pathogenesis of LHON and other mitochondriopathies.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Animales , Bovinos , ADN Mitocondrial/genética , Familia , Femenino , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/veterinaria , Linaje
6.
Front Genet ; 13: 887582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615375

RESUMEN

Sheep are one of the most important livestock species in Croatia, found mainly in the Mediterranean coastal and mountainous regions along the East Adriatic coast, well adapted to the environment and mostly kept extensively. Our main objective was therefore to map the positive selection of the X-chromosome (18,983 SNPs that passed quality control), since nothing is known about the adaptation genes on this chromosome for any of the breeds from the Balkan cluster. Analyses were performed on a sample of eight native Croatian breeds (101 females and 100 males) representing the East Adriatic metapopulation and on 10 mouflons (five females and males), all sampled in Croatia. Three classical within-population approaches (extreme Runs of Homozygosity islands, integrated Haplotype Score, and number of Segregating Sites by Length) were applied along with our new approach called Haplotype Richness Drop (HRiD), which uses only the information contained in male haplotypes. We have also shown that phylogenetic analyses, such as the Median-joining network, can provide additional information when performed with the selection signals identified by HRiD. Our new approach identifies positive selection signals by searching for genomic regions that exhibit a sudden decline in haplotype richness. In total, we identified 14 positive selection signals, 11 using the classical approach and three using the HRiD approach, all together containing 34 annotated genes. The most reliable selection signal was mapped by all four approaches in the same region, overlapping between 13.17 and 13.60 Mb, and assigned to the CA5B, ZRSR2, AP1S2, and GRPR genes. High repeatability (86%) of results was observed, as 12 identified selection signals were also confirmed in other studies with sheep. HRiD offers an interesting possibility to be used complementary to other approaches or when only males are genotyped, which is often the case in genomic breeding value estimations. These results highlight the importance of the X-chromosome in the adaptive architecture of domestic ruminants, while our novel HRiD approach opens new possibilities for research.

7.
Evol Appl ; 15(4): 663-678, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35505892

RESUMEN

The contribution of domestic cattle in human societies is enormous, making cattle, along with other essential benefits, the economically most important domestic animal in the world today. To expand existing knowledge on cattle domestication and mitogenome diversity, we performed a comprehensive complete mitogenome analysis of the species (802 sequences, 114 breeds). A large sample was collected in South-east Europe, an important agricultural gateway to Europe during Neolithization and a region rich in cattle biodiversity. We found 1725 polymorphic sites (810 singletons, 853 parsimony-informative sites and 57 indels), 701 unique haplotypes, a haplotype diversity of 0.9995 and a nucleotide diversity of 0.0015. In addition to the dominant T3 and several rare haplogroups (Q, T5, T4, T2 and T1), we have identified maternal line in Austrian Murbodner cattle that possess surviving aurochs' mitochondria haplotype P1 that diverged prior to the Neolithization process. This is convincing evidence for rare female-mediated adaptive introgression of wild aurochs into domesticated cattle in Europe. We revalidated the existing haplogroup classification and provided Bayesian phylogenetic inference with a more precise estimated divergence time than previously available. Occasionally, classification based on partial mitogenomes was not reliable; for example, some individuals with haplogroups P and T5 were not recognized based on D-loop information. Bayesian skyline plot estimates (median) show that the earliest population growth began before domestication in cattle with haplogroup T2, followed by Q (~10.0-9.5 kyBP), whereas cattle with T3 (~7.5 kyBP) and T1 (~3.0-2.5 kyBP) expanded later. Overall, our results support the existence of interactions between aurochs and cattle during domestication and dispersal of cattle in the past, contribute to the conservation of maternal cattle diversity and enable functional analyses of the surviving aurochs P1 mitogenome.

8.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893856

RESUMEN

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Asunto(s)
Genoma , Oveja Doméstica , Animales , Asia , Europa (Continente) , Variación Genética , Irán , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Ovinos/genética , Oveja Doméstica/genética
9.
Curr Biol ; 30(20): 4085-4095.e6, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32822607

RESUMEN

The domestication and subsequent global dispersal of livestock are crucial events in human history, but the migratory episodes during the history of livestock remain poorly documented [1-3]. Here, we first developed a set of 493 novel ovine SNPs of the male-specific region of Y chromosome (MSY) by genome mapping. We then conducted a comprehensive genomic analysis of Y chromosome, mitochondrial DNA, and whole-genome sequence variations in a large number of 595 rams representing 118 domestic populations across the world. We detected four different paternal lineages of domestic sheep and resolved, at the global level, their paternal origins and differentiation. In Northern European breeds, several of which have retained primitive traits (e.g., a small body size and short or thin tails), and fat-tailed sheep, we found an overrepresentation of MSY lineages y-HC and y-HB, respectively. Using an approximate Bayesian computation approach, we reconstruct the demographic expansions associated with the segregation of primitive and fat-tailed phenotypes. These results together with archaeological evidence and historical data suggested the first expansion of early domestic hair sheep and the later expansion of fat-tailed sheep occurred ∼11,800-9,000 years BP and ∼5,300-1,700 years BP, respectively. These findings provide important insights into the history of migration and pastoralism of sheep across the Old World, which was associated with different breeding goals during the Neolithic agricultural revolution.


Asunto(s)
ADN Mitocondrial/genética , Genoma/genética , Polimorfismo de Nucleótido Simple/genética , Oveja Doméstica/genética , Cromosoma Y/genética , Animales , Cruzamiento , Linaje de la Célula/genética , Mapeo Cromosómico , Variación Genética/genética , Masculino , Mitocondrias/genética , Fenotipo , Filogenia , Ovinos , Oveja Doméstica/clasificación , Secuenciación Completa del Genoma
10.
Genet Sel Evol ; 52(1): 39, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32640975

RESUMEN

BACKGROUND: Accumulation of detrimental mutations in small populations leads to inbreeding depression of fitness traits and a higher frequency of genetic defects, thus increasing risk of extinction. Our objective was to quantify the magnitude of inbreeding depression for survival at birth, in a closed rabbit population under long-term selection. METHODS: We used an information theory-based approach and multi-model inference to estimate inbreeding depression and its purging with respect to the trait 'kit survival at birth' over a 25-year period in a closed population of Pannon White rabbits, by analysing 22,718 kindling records. Generalised linear mixed models based on the logit link function were applied, which take polygenic random effects into account. RESULTS: Our results indicated that inbreeding depression occurred during the period 1992-1997, based on significant estimates of the z-standardised classical inbreeding coefficient z.FL (CI95% - 0.12 to - 0.03) and of the new inbreeding coefficient of the litter z.FNEWL (CI95% - 0.13 to - 0.04) as well as a 59.2% reduction in contributing founders. Inbreeding depression disappeared during the periods 1997-2007 and 2007-2017. For the period 1992-1997, the best model resulted in a significantly negative standardised estimate of the new inbreeding coefficient of the litter and a significantly positive standardised estimate of Kalinowski's ancestral inbreeding coefficient of the litter (CI95% 0.01 to 0.17), which indicated purging of detrimental load. Kindling season and parity had effects on survival at birth that differed across the three periods of 1992-1997, 1997-2007 and 2007-2017. CONCLUSIONS: Our results support the existence of inbreeding depression and its purging with respect to kit survival at birth in this Pannon White rabbit population. However, we were unable to exclude possible confounding from the effects of parity and potentially other environmental factors during the study period, thus our results need to be extended and confirmed in other populations.


Asunto(s)
Endogamia , Conejos/genética , Selección Genética , Animales , Biomasa , Aptitud Genética , Tamaño de la Camada , Acumulación de Mutaciones , Conejos/fisiología
11.
Genet Sel Evol ; 52(1): 25, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32408891

RESUMEN

BACKGROUND: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. RESULTS: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed [Formula: see text] profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. CONCLUSIONS: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.


Asunto(s)
Genética de Población/métodos , Polimorfismo de Nucleótido Simple/genética , Ovinos/genética , Animales , Peninsula Balcánica , Cruzamiento/métodos , Domesticación , Pruebas Genéticas/métodos , Variación Genética/genética , Genotipo , Filogenia , Filogeografía/métodos
12.
Front Genet ; 11: 261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296459

RESUMEN

The majority of the nearly 400 existing local pig breeds are adapted to specific environments and human needs. The demand for large production quantities and the industrialized pig production have caused a rapid decline of many local pig breeds in recent decades. Black Slavonian pig and Turopolje pig, the latter highly threatened, are the two Croatian local indigenous breeds typically grown in extensive or semi-intensive systems. In order to guide a long-term breeding program to prevent the disappearance of these breeds, we analyzed their genetic diversity, inbreeding level and relationship with other local breeds across the world, as well as modern breeds and several wild populations, using high throughput genomic data obtained using the Illumina Infinium PorcineSNP60 v2 BeadChip. Multidimensional scaling analysis positioned Black Slavonian pigs close to the UK/North American breeds, while the Turopolje pig clustered within the Mediterranean breeds. Turopolje pig showed a very high inbreeding level (FROH > 4 Mb = 0.400 and FROH > 8 Mb = 0.332) that considerably exceeded the level of full-sib mating, while Black Slavonian pig showed much lower inbreeding (FROH > 4 Mb = 0.098 and FROH > 8 Mb = 0.074), indicating a planned mating strategy. In Croatian local breeds we identified several genome regions showing adaptive selection signals that were not present in commercial breeds. The results obtained in this study reflect the current genetic status and breeding management of the two Croatian indigenous local breeds. Given the small populations of both breeds, a controlled management activity has been implemented in Black Slavonian pigs since their commercial value has been recognized. In contrast, the extremely high inbreeding level observed in Turopolje pig argues for an urgent conservation plan with a long-term, diversity-oriented breeding program.

13.
Genet Sel Evol ; 51(1): 79, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31881816

RESUMEN

BACKGROUND: Tibetan Terrier is a popular medium-sized companion dog breed. According to the history of the breed, the western population of Tibetan Terriers includes two lineages, Lamleh and Luneville. These two lineages derive from a small number of founder animals from the native Tibetan Terrier population, which were brought to Europe in the 1920s. For almost a century, the western population of Tibetan Terriers and the native population in Tibet were reproductively isolated. In this study, we analysed the structure of the western population of Tibetan Terriers, the original native population from Tibet and of different crosses between these two populations. We also examined the genetic relationships of Tibetan Terriers with other dog breeds, especially terriers and some Asian breeds, and the within-breed structure of both Tibetan Terrier populations. RESULTS: Our analyses were based on high-density single nucleotide polymorphism (SNP) array (Illumina HD Canine 170 K) and microsatellite (18 loci) genotypes of 64 Tibetan Terriers belonging to different populations and lineages. For the comparative analysis, we used 348 publicly available SNP array genotypes of dogs from other breeds. We found that the western population of Tibetan Terriers and the native Tibetan Terriers clustered together with other Asian dog breeds, whereas all other terrier breeds were grouped into a separate group. We were also able to differentiate the western Tibetan Terrier lineages (Lamleh and Luneville) from the native Tibetan Terrier population. CONCLUSIONS: Our results reveal the relationships between the western and native populations of Tibetan Terriers and support the hypothesis that Tibetan Terrier belongs to the group of ancient dog breeds of Asian origin, which are close to the ancestors of the modern dog that were involved in the early domestication process. Thus, we were able to reject the initial hypothesis that Tibetan Terriers belong to the group of terrier breeds. The existence of this native population of Tibetan Terriers at its original location represents an exceptional and valuable genetic resource.


Asunto(s)
Perros/genética , Genética de Población , Animales , Cruzamiento , Genotipo , Repeticiones de Microsatélite , Filogenia , Polimorfismo de Nucleótido Simple , Tibet
14.
Front Genet ; 10: 537, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214253

RESUMEN

Genetic characterization of African goats is one of the current priorities in the improvement of goats in the continent. This study contributes to the characterization effort by determining the levels and number of generations to common ancestors ("age") associated with inbreeding in African goat breeds and identifies regions that contain copy number variation mistyped as being homozygous. Illumina 50k single nucleotide polymorphism genotype data for 608 goats from 31 breeds were used to compute the level and age of inbreeding at both local (marker) and global levels (FG) using a model-based approach based on a hidden Markov model. Runs of homozygosity (ROH) segments detected using the Viterbi algorithm led to ROH-based inbreeding coefficients for all ROH (FROH) and for ROH longer than 2 Mb (FROH > 2Mb). Some of the genomic regions identified as having ROH are likely to be hemizygous regions (copy number deletions) mistyped as homozygous regions. Although the proportion of these miscalled ROH is small and does not substantially affect estimates of levels of inbreeding for individual animals, the inbreeding metrics were adjusted by removing these regions from the ROH. All the inbreeding metrics varied widely across breeds, with overall means of 0.0408, 0.0370, and 0.0691 and medians of 0.0125, 0.0098, and 0.0366 for FROH, FROH > 2Mb, and FG, respectively. Several breeds (including Menabe and Sofia from Madagascar) had high proportions of recent inbreeding, while Small East African, Ethiopian, and most of the West African breeds (including West African Dwarf) had more ancient inbreeding.

15.
BMC Bioinformatics ; 20(1): 167, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940067

RESUMEN

BACKGROUND: Genome-wide prediction has become the method of choice in animal and plant breeding. Prediction of breeding values and phenotypes are routinely performed using large genomic data sets with number of markers on the order of several thousands to millions. The number of evaluated individuals is usually smaller which results in problems where model sparsity is of major concern. The LASSO technique has proven to be very well-suited for sparse problems often providing excellent prediction accuracy. Several computationally efficient LASSO algorithms have been developed, but optimization of hyper-parameters can be demanding. RESULTS: We have developed a novel automatic adaptive LASSO (AUTALASSO) based on the alternating direction method of multipliers (ADMM) optimization algorithm. The two major hyper-parameters of ADMM are the learning rate and the regularization factor. The learning rate is automatically tuned with line search and the regularization factor optimized using Golden section search. Results show that AUTALASSO provides superior prediction accuracy when evaluated on simulated and real bull data compared to the adaptive LASSO, LASSO and ridge regression implemented in the popular glmnet software. CONCLUSIONS: The AUTALASSO provides a very flexible and computationally efficient approach to GWP, especially when it is important to obtain high prediction accuracy and genetic gain. The AUTALASSO also has the capability to perform GWAS of both additive and dominance effects with smaller prediction error than the ordinary LASSO.


Asunto(s)
Algoritmos , Genómica/métodos , Animales , Cruzamiento , Bovinos , Genoma , Programas Informáticos
16.
Acta Biochim Pol ; 65(3): 421-424, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30148506

RESUMEN

The Slovak Pinzgau breed faces the bottleneck effect and the loss of diversity due to unequal use of founders and a significant population decline. Further population size reduction can lead to serious problems. Information obtained here and in other studies from high-throughput genotyping of 179 individuals was used to characterise genetic diversity and differentiation of Slovak Pinzgau, Austrian Pinzgau, Cika and Piedmontese cattle by Bayesian clustering algorithm. A gene flow network for the clusters estimated from admixture results was produced. The low estimate of genetic differentiation (FST) in Pinzgau cattle populations indicated that differentiation among these populations is low, particularly owing to a common historical origin and high gene flow. Changes in the log marginal likelihood indicated Austrian Pinzgau as the most similar breed to Slovak Pinzgau. All populations except the Piedmontese one displayed two ways of gene flow among populations, indicating that Piedmontese cattle was involved in producing of the analysed breeds while these breeds were not involved in creation of Piedmontese. Genetic evaluation represents an important tool in breeding and cattle selection. It is more strategically important than ever to preserve as much of the livestock diversity as possible, to ensure a prompt and proper response to the needs of future generations. Information provided by the fine-scale genetic characterization of this study clearly shows that there is a difference in genetic composition of Slovak and Austrian populations, as well as the Cika and Piedmontese cattle. Despite its population size, the Slovak Pinzgau cattle have a potential to serve as a basic gene reserve of this breed, with European and world-wide importance.


Asunto(s)
Bovinos/genética , Variación Genética , Algoritmos , Animales , Teorema de Bayes , Cruzamiento , Bovinos/fisiología , Análisis por Conglomerados , Flujo Génico , Genotipo
17.
Genet Sel Evol ; 50(1): 43, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30134820

RESUMEN

BACKGROUND: Runs of homozygosity (ROH) islands are stretches of homozygous sequence in the genome of a large proportion of individuals in a population. Algorithms for the detection of ROH depend on the similarity of haplotypes. Coverage gaps and copy number variants (CNV) may result in incorrect identification of such similarity, leading to the detection of ROH islands where none exists. Misidentified hemizygous regions will also appear as homozygous based on sequence variation alone. Our aim was to identify ROH islands influenced by marker coverage gaps or CNV, using Illumina BovineHD BeadChip (777 K) single nucleotide polymorphism (SNP) data for Austrian Brown Swiss, Tyrol Grey and Pinzgauer cattle. METHODS: ROH were detected using clustering, and ROH islands were determined from population inbreeding levels for each marker. CNV were detected using a multivariate copy number analysis method and a hidden Markov model. SNP coverage gaps were defined as genomic regions with intermarker distances on average longer than 9.24 kb. ROH islands that overlapped CNV regions (CNVR) or SNP coverage gaps were considered as potential artefacts. Permutation tests were used to determine if overlaps between CNVR with copy losses and ROH islands were due to chance. Diversity of the haplotypes in the ROH islands was assessed by haplotype analyses. RESULTS: In Brown Swiss, Tyrol Grey and Pinzgauer, we identified 13, 22, and 24 ROH islands covering 26.6, 389.0 and 35.8 Mb, respectively, and we detected 30, 50 and 71 CNVR derived from CNV by using both algorithms, respectively. Overlaps between ROH islands, CNVR or coverage gaps occurred for 7, 14 and 16 ROH islands, respectively. About 37, 44 and 52% of the ROH islands coverage in Brown Swiss, Tyrol Grey and Pinzgauer, respectively, were affected by copy loss. Intersections between ROH islands and CNVR were small, but significantly larger compared to ROH islands at random locations across the genome, implying an association between ROH islands and CNVR. Haplotype diversity for reliable ROH islands was lower than for ROH islands that intersected with copy loss CNVR. CONCLUSIONS: Our findings show that a significant proportion of the ROH islands in the bovine genome are artefacts due to CNV or SNP coverage gaps.


Asunto(s)
Bovinos/genética , Variaciones en el Número de Copia de ADN , Técnicas de Genotipaje/normas , Homocigoto , Animales , Haplotipos , Polimorfismo de Nucleótido Simple
18.
J Dairy Sci ; 100(6): 4721-4730, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28434751

RESUMEN

Inbreeding depression is known to affect quantitative traits such as male fertility and sperm quality, but the genetic basis for these associations is poorly understood. Most studies have been limited to examining how pedigree- or marker-derived genome-wide autozygosity is associated with quantitative phenotypes. In this study, we analyzed possible associations of genetic features of inbreeding depression with percentage of live spermatozoa and total number of spermatozoa in 19,720 ejaculates obtained from 554 Austrian Fleckvieh bulls during routine artificial insemination programs. Genome-wide inbreeding depression was estimated and genomic regions contributing to inbreeding depression were mapped. Inbreeding depression did affect total number of spermatozoa, and such depression was predicted by pedigree-based inbreeding levels and genome-wide inbreeding levels based on runs of homozygosity (ROH). Genome-wide inbreeding depression did not seem to affect percentage of live spermatozoa. A model incorporating genetic effects of the bull, environmental factors, and additive genetic and ROH status effects of individual single-nucleotide polymorphisms revealed genomic regions significantly associated with ROH status for total number of spermatozoa (4 regions) or percentage of live spermatozoa (5 regions). All but one region contains genes related to spermatogenesis and sperm morphology. These genomic regions contain genes affecting sperm morphogenesis and efficacy. The results highlight that next-generation sequencing may help explain some of the genetic factors contributing to inbreeding depression of sperm quality traits in Fleckvieh bulls.


Asunto(s)
Mapeo Cromosómico/veterinaria , Depresión Endogámica/genética , Espermatozoides/fisiología , Animales , Austria , Bovinos , Interacción Gen-Ambiente , Homocigoto , Inseminación Artificial/veterinaria , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Semen , Recuento de Espermatozoides , Espermatogénesis/genética
19.
Genet Sel Evol ; 48(1): 65, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27613390

RESUMEN

BACKGROUND: Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. RESULTS: We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. CONCLUSIONS: MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source code, along with the manual and the example files can be downloaded at http://lissp.irb.hr/software/magellan-1-0/ and https://github.com/sristov/magellan .


Asunto(s)
Genética de Población/métodos , Herencia Materna/genética , Programas Informáticos , Animales , Simulación por Computador , ADN Mitocondrial/genética , Ligamiento Genético , Pruebas Genéticas/métodos , Humanos , Modelos Genéticos , Linaje , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
20.
Front Genet ; 6: 314, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26539210

RESUMEN

Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that "…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity." However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are societal in origin and are predicated on the value (e.g., socio-economic and cultural) of these resources to farmers, rural communities and society as a whole. The overall conclusion is that despite the fact that the livestock sector has been relatively well-organized in the application of genetic methodologies to date, there is still a large gap between the current state-of-the-art in the use of tools to characterize genomic resources and its application to many non-commercial and local breeds, hampering the consistent utilization of genetic and genomic data as indicators of genetic erosion and diversity. The livestock genomic sector therefore needs to make a concerted effort in the coming decade to enable to the democratization of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...