Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(3): e2313332121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38207080

RESUMEN

The emergence of an RNA replicase capable of self-replication is considered an important stage in the origin of life. RNA polymerase ribozymes (PR) - including a variant that uses trinucleotide triphosphates (triplets) as substrates - have been created by in vitro evolution and are the closest functional analogues of the replicase, but the structural basis for their function is poorly understood. Here we use single-particle cryogenic electron microscopy (cryo-EM) and high-throughput mutation analysis to obtain the structure of a triplet polymerase ribozyme (TPR) apoenzyme and map its functional landscape. The cryo-EM structure at 5-Å resolution reveals the TPR as an RNA heterodimer comprising a catalytic subunit and a noncatalytic, auxiliary subunit, resembling the shape of a left hand with thumb and fingers at a 70° angle. The two subunits are connected by two distinct kissing-loop (KL) interactions that are essential for polymerase function. Our combined structural and functional data suggest a model for templated RNA synthesis by the TPR holoenzyme, whereby heterodimer formation and KL interactions preorganize the TPR for optimal primer-template duplex binding, triplet substrate discrimination, and templated RNA synthesis. These results provide a better understanding of TPR structure and function and should aid the engineering of more efficient PRs.


Asunto(s)
ARN Catalítico , ARN Catalítico/metabolismo , Microscopía por Crioelectrón , ARN/genética , ARN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasa Dependiente del ARN/genética
2.
Curr Opin Psychol ; 55: 101769, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091665

RESUMEN

Bullshitting is characterized by sharing information with little to no regard for truth, established knowledge, or genuine evidence. It involves the use of various rhetorical strategies to make one's statements sound knowledgeable, impressive, persuasive, influential, or confusing in order to aid bullshitters in explaining things in areas where their obligations to provide opinions exceed their actual knowledge in those domains. Distinct from gullibility (i.e., a propensity to accept a false premise in the presence of untrustworthiness cues), we highlight the research on bullibility (i.e., believing bullshit even in the face of social cues that signal something is bullshit) and its links to erroneous judgments and decisions. A deeper understanding of bullibility is critical to identifying and correcting poor decision-making.


Asunto(s)
Cognición , Juicio , Humanos , Señales (Psicología) , Comunicación Persuasiva , Lenguaje
3.
iScience ; 26(5): 106757, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216125

RESUMEN

The complexity of the metazoan proteome is significantly increased by the expression of small proteins (<100 aa) derived from smORFs within lncRNAs, uORFs, 3' UTRs and, reading frames overlapping the CDS. These smORF encoded proteins (SEPs) have diverse roles, ranging from the regulation of cellular physiological to essential developmental functions. We report the characterization of a new member of this protein family, SEP53BP1, derived from a small internal ORF that overlaps the CDS encoding 53BP1. Its expression is coupled to the utilization of an alternative, cell-type specific promoter coupled to translational reinitiation events mediated by a uORF in the alternative 5' TL of the mRNA. This uORF-mediated reinitiation at an internal ORF is also observed in zebrafish. Interactome studies indicate that the human SEP53BP1 associates with components of the protein turnover pathway including the proteasome, and the TRiC/CCT chaperonin complex, suggesting that it may play a role in cellular proteostasis.

4.
Cureus ; 15(1): e33889, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36819431

RESUMEN

Biopsies of the liver, lung, and kidney are performed for many indications, including organ dysfunction, mass lesions, and allograft monitoring. The diagnosis depends on the sample, which may or may not be representative of the lesion or pathology in question. Further, biopsies are not without risk of complications. Autopsies are a resource for assessing the accuracy of biopsy diagnoses and evaluating possible complications. Herein, we aimed to compare liver, lung, and kidney biopsy diagnoses with those from autopsies conducted soon after the procedure and to assess the contribution of biopsy to mortality. A 28-year search of our database identified 147 patients who were autopsied after dying within 30 days of a liver, lung, or kidney biopsy. The concordance of the biopsy diagnosis with the autopsy findings was determined. Finally, medical records were reviewed to determine the likelihood that a biopsy contributed to the patient's death. The contribution of the biopsy to death was categorized as "unlikely," "possible," or "probable." Overall concordance between biopsy and autopsy diagnoses was 87% (128/147), including 95% (87/92), 71% (32/45), and 90% (9/10) for liver, lung, and kidney biopsies, respectively. Concordance was lower for biopsies of suspected neoplasms versus non-neoplastic diseases. Lung biopsy concordance was higher for wedge biopsy versus needle or forceps biopsy. A biopsy was determined to at least "possibly" contribute to death in 23 cases (16%). In conclusion, an autopsy is an important tool to validate liver, lung, or kidney biopsy diagnoses. Confirmation of biopsy diagnoses via post-mortem examination may be particularly valuable when patients die soon after the biopsy procedure. Furthermore, an autopsy is especially useful when patients die soon after a biopsy in order to determine what role, if any, the procedure played in their deaths. Though biopsy complications are uncommon, a biopsy may still contribute to or precipitate death in a small number of patients.

5.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362157

RESUMEN

The first step in translation initiation consists in the recruitment of the small ribosome onto the mRNA. This preinitiation complex (PIC) loads via interactions with eIF4F that has assembled on the 5' cap. It then scans the 5' TL (transcript leader) to locate a start site. The molecular architecture of the PIC-mRNA complex over the cap is beginning to be resolved. As part of this, we have been examining the role of the 5' TL length. We observed in vivo initiation events on AUG codons positioned within 3 nts of the 5' cap and robust initiation in vitro at start sites immediately downstream of the 5' end. Ribosomal toe-printing confirmed the positioning of these codons within the P site, indicating that the ribosome reads from the +1 position. To explore differences in the eIF4E-5' cap interaction in the context of long versus short TL, we followed the fate of the eIF4E-cap interaction using a novel solid phase in vitro expression assay. We observed that ribosome recruitment onto a short TL disrupts the eIF4E-cap contact releasing all the mRNA from the solid phase, whereas with a long the mRNA distributes between both phases. These results are discussed in the context of current recruitment models.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Ribosomas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Ribosomas/genética , Ribosomas/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo
6.
Biochem J ; 478(13): 2445-2464, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198326

RESUMEN

SARS-CoV-2 is a coronavirus that emerged in 2019 and rapidly spread across the world causing a deadly pandemic with tremendous social and economic costs. Healthcare systems worldwide are under great pressure, and there is an urgent need for effective antiviral treatments. The only currently approved antiviral treatment for COVID-19 is remdesivir, an inhibitor of viral genome replication. SARS-CoV-2 proliferation relies on the enzymatic activities of the non-structural proteins (nsp), which makes them interesting targets for the development of new antiviral treatments. With the aim to identify novel SARS-CoV-2 antivirals, we have purified the exoribonuclease/methyltransferase (nsp14) and its cofactor (nsp10) and developed biochemical assays compatible with high-throughput approaches to screen for exoribonuclease inhibitors. We have screened a library of over 5000 commercial compounds and identified patulin and aurintricarboxylic acid (ATA) as inhibitors of nsp14 exoribonuclease in vitro. We found that patulin and ATA inhibit replication of SARS-CoV-2 in a VERO E6 cell-culture model. These two new antiviral compounds will be valuable tools for further coronavirus research as well as potentially contributing to new therapeutic opportunities for COVID-19.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Animales , Ácido Aurintricarboxílico/farmacología , Chlorocebus aethiops , Pruebas de Enzimas , Exorribonucleasas/metabolismo , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Patulina/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Células Vero , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo
7.
Biochem J ; 478(13): 2499-2515, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198327

RESUMEN

The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Azoles/farmacología , Chlorocebus aethiops , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/aislamiento & purificación , Proteasas 3C de Coronavirus/metabolismo , Pruebas de Enzimas , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Isoindoles , Leupeptinas/farmacología , Compuestos de Organoselenio/farmacología , Peptidomiméticos , Proteínas de Unión al ARN/metabolismo , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Células Vero , Proteínas no Estructurales Virales/metabolismo
8.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198328

RESUMEN

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/antagonistas & inhibidores , Metiltransferasas/antagonistas & inhibidores , Caperuzas de ARN/metabolismo , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/química , Clorobencenos/farmacología , Chlorocebus aethiops , Pruebas de Enzimas , Exorribonucleasas/genética , Exorribonucleasas/aislamiento & purificación , Exorribonucleasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Indazoles/farmacología , Indenos/farmacología , Indoles/farmacología , Metiltransferasas/genética , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Nitrilos/farmacología , Fenotiazinas/farmacología , Purinas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Especificidad por Sustrato , Trifluperidol/farmacología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/aislamiento & purificación , Proteínas Reguladoras y Accesorias Virales/metabolismo
9.
Nucleic Acids Res ; 49(9): 5159-5176, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33893802

RESUMEN

The eIF4E are a family of initiation factors that bind the mRNA 5' cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5' TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have 'moon-lighting' functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote 'stress resistance' and adaptation.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Estrés Fisiológico/genética , Animales , Células Cultivadas , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Ratones , Naftiridinas/farmacología , Caperuzas de ARN/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
10.
Front Genet ; 7: 156, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27630668

RESUMEN

A major determinant in the efficiency of ribosome loading onto mRNAs is the 5' TL (transcript leader or 5' UTR). In addition, elements within this region also impact on start site selection demonstrating that it can modulate the protein readout at both quantitative and qualitative levels. With the increasing wealth of data generated by the mining of the mammalian transcriptome, it has become evident that a genes 5' TL is not homogeneous but actually exhibits significant heterogeneity. This arises due to the utilization of alternative promoters, and is further compounded by significant variability with regards to the precise transcriptional start sites of each (not to mention alternative splicing). Consequently, the transcript for a protein coding gene is not a unique mRNA, but in-fact a complexed quasi-species of variants whose composition may respond to the changing physiological environment of the cell. Here we examine the potential impact of these events with regards to the protein readout.

11.
BMC Genomics ; 16: 986, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26589636

RESUMEN

BACKGROUND: The genetic program, as manifested as the cellular phenotype, is in large part dictated by the cell's protein composition. Since characterisation of the proteome remains technically laborious it is attractive to define the genetic expression profile using the transcriptome. However, the transcriptional landscape is complex and it is unclear as to what extent it reflects the ribosome associated mRNA population (the translatome). This is particularly pertinent for genes using multiple transcriptional start sites (TSS) generating mRNAs with heterogeneous 5' transcript leaders (5'TL). Furthermore, the relative abundance of the TSS gene variants is frequently cell-type specific. Indeed, promoter switches have been reported in pathologies such as cancer. The consequences of this 5'TL heterogeneity within the transcriptome for the translatome remain unresolved. This is not a moot point because the 5'TL plays a key role in regulating mRNA recruitment onto polysomes. RESULTS: In this article, we have characterised both the transcriptome and translatome of the MCF7 (tumoural) and MCF10A (non-tumoural) cell lines. We identified ~550 genes exhibiting differential translation efficiency (TE). In itself, this is maybe not surprising. However, by focusing on genes exhibiting TSS heterogeneity we observed distinct differential promoter usage patterns in both the transcriptome and translatome. Only a minor fraction of these genes belonged to those exhibiting differential TE. Nonetheless, reporter assays demonstrated that the TSS variants impacted on the translational readout both quantitatively (the overall amount of protein expressed) and qualitatively (the nature of the proteins expressed). CONCLUSIONS: The results point to considerable and distinct cell-specific 5'TL heterogeneity within both the transcriptome and translatome of the two cell lines analysed. This observation is in-line with the ribosome filter hypothesis which posits that the ribosomal machine can selectively filter information from within the transcriptome. As such it cautions against the simple extrapolation transcriptome → proteome. Furthermore, polysomal occupancy of specific gene 5'TL variants may also serve as novel disease biomarkers.


Asunto(s)
Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Sitio de Iniciación de la Transcripción , Animales , Línea Celular , Biología Computacional/métodos , Regulación de la Expresión Génica , Humanos , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Caperuzas de ARN , ARN Mensajero/química , Transcriptoma
12.
Nucleic Acids Res ; 43(17): 8392-404, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26264663

RESUMEN

A plethora of stresses trigger a rapid downregulation of protein synthesis. However, a fraction of mRNAs continue to be recruited onto polysomes and their protein products play a key role in deciding cell fate. These transcripts are characterized by the presence of uORFs within their 5' TL coupling protein expression to reinitiation. The translational brake arises due to the activation of a family of kinases targeting the α subunit of the trimolecular eIF2(αßγ) initiation factor. Phosphorylation of eIF2αSer51 inhibits ternary complex regeneration reducing the pool of 43S ribosomes. It is popular to mimic this event, and hence the integrated stress response (ISR), by the expression of the phosphomimetic eIF2αS51D. However, we report that whereas the ISR is reproduced by eIF2αS51D expression in human HEK293T cells this is not the case in N2a mouse neuroblastoma cells. With regards to translational downregulation, this arises due to the failure of the phosphomimetic protein to assemble an eIF2 complex with endogenous eIF2ß/γ. This can be compensated for by the transient co-expression of all three subunits. Curiously, these conditions do not modulate reinitiation and consequently fail to trigger the ISR. This is the first demonstration that the inhibitory and reinitiation functions of eIF2αS/D can be separated.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Estrés Fisiológico/genética , Animales , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/química , Células HEK293 , Humanos , Ratones , Fosforilación , Subunidades de Proteína/metabolismo
13.
Anal Biochem ; 484: 72-4, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25963893

RESUMEN

Eukaryotic messenger RNAs (mRNAs) are generally enriched using oligo(dT) selection. However, a significant fraction of mRNAs contain either short or no poly(A). Our technique permits the isolation of mRNAs via their unique biochemical feature, the 5' cap. It involves RNA extraction, blocking of the 3' ribose cis-diol by cordycepin, oxidation of the 5' cis-diol of the CAP to a dialdehyde, coupling to a biotinylated linker, and enrichment on a streptavidin affinity matrix. We demonstrate that it efficiently pulls out a synthetic capped and non-polyadenylated transcript used to spike total cell RNA as well as endogenous histone 3c mRNA reported to be poly(A) negative.


Asunto(s)
Eucariontes , Polinucleotido Adenililtransferasa/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo
14.
PLoS One ; 9(7): e102890, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036748

RESUMEN

Elk1 belongs to the ternary complex (TCF) subfamily of the ETS-domain transcription factors. Several studies have implicated an important function for Elk1 in the CNS including synaptic plasticity and cell differentiation. Whilst studying ELK1 gene expression in rat brain a 54 aa N-terminally truncated isoform lacking the DBD was observed on immunoblots. A similar protein was also detected in NGF differentiated PC12 cells. It was proposed that this protein, referred to as sElk1, arose due to a de-novo initiation event at the second AUG codon on the Elk1 ORF. Transient over-expression of sElk1 potentiated neurite growth in the PC12 model and induced differentiation in the absence of NGF, leading to the proposition that it may have a specific function in the CNS. Here we report on the translational expression from the mouse and rat transcript and compare it with our earlier published work on human. Results demonstrate that the previously observed sElk1 protein is a non-specific band arising from the antibody employed. The tight conservation of the internal AUG reported to drive sElk1 expression is in fact coupled to Elk1 protein function, a result consistent with the Elk1-SRE crystal structure. It is also supported by the observed conservation of this methionine in the DBD of all ETS transcription factors independent of the N- or C-terminal positioning of this domain. Reporter assays demonstrate that elements both within the 5'UTR and downstream of the AUGElk1 serve to limit 40S access to the AUGsElk1 codon.


Asunto(s)
Codón/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular/genética , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Datos de Secuencia Molecular , Células PC12 , Ratas , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Mol Cell Biol ; 32(9): 1745-56, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22354998

RESUMEN

The 5' untranslated region (UTR) plays a central role in the regulation of mammalian translation initiation. Key components include RNA structure, upstream AUGs (uAUGs), upstream open reading frames (uORFs), and internal ribosome entry site elements that can interact to modulate the readout. We previously reported the characterization of two alternatively spliced 5' UTR isoforms of the human elk-1 gene. Both contain two uAUGs and a stable RNA stem-loop, but the long form (5' UTR(L)) was more repressive than the short form (5' UTR(S)) for initiation at the ELK-1 AUG. We now demonstrate that ELK-1 expression arises by a combination of leaky scanning and reinitiation, with the latter mediated by the small uORF2 conserved in both spliced isoforms. In HEK293T cells, a considerable fraction of ribosomes scans beyond the ELK-1 AUG in a reinitiation mode. These are sequestered by a series of out-of-frame AUG codons that serve to prevent access to a second in-frame AUG start site used to express short ELK-1 (sELK-1), an N-terminally truncated form of ELK-1 that has been observed only in neuronal cells. We present evidence that all these events are fine-tuned by the nature of the 5' UTR and the activity of the α subunit of eukaryotic initiation factor 2 and provide insights into the neuronal specificity of sELK-1 expression.


Asunto(s)
Regiones no Traducidas 5' , Empalme Alternativo , Sistemas de Lectura Abierta , Proteína Elk-1 con Dominio ets/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Humanos , Datos de Secuencia Molecular , Unión Proteica , Ribosomas/metabolismo , Alineación de Secuencia , Proteína Elk-1 con Dominio ets/genética
16.
Nucleic Acids Res ; 39(3): 989-1003, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20876686

RESUMEN

Polysomal messenger RNA (mRNA) populations change rapidly in response to alterations in the physiological status of the cell. For this reason, translational regulation, mediated principally at the level of initiation, plays a key role in the maintenance of cellular homeostasis. In an earlier translational profiling study, we followed the impact of rapamycin on polysome re-seeding. Despite the overall negative effect on transcript recruitment, we nonetheless observed that some mRNAs were significantly less affected. Consequently, their relative polysomal occupancy increased in the rapamycin-treated cells. The behaviour of one of these genes, mdm2, has been further analysed. Despite the absence of internal ribosome entry site activity we demonstrate, using a dual reporter assay, that both the reported mdm2 5'-UTRs confer resistance to rapamycin relative to the 5'-UTR of ß-actin. This relative resistance is responsive to the downstream targets mTORC1 but did not respond to changes in the La protein, a reported factor acting positively on MDM2 translational expression. Furthermore, extended exposure to rapamycin in the presence of serum increased the steady-state level of the endogenous MDM2 protein. However, this response was effectively reversed when serum levels were reduced. Taken globally, these studies suggest that experimental conditions can dramatically modulate the expressional output during rapamycin exposure.


Asunto(s)
Regiones no Traducidas 5' , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Proto-Oncogénicas c-mdm2/genética , Sirolimus/farmacología , Células HEK293 , Humanos , Polirribosomas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
17.
Genome Res ; 19(8): 1471-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19581486

RESUMEN

Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.


Asunto(s)
Cromosomas Humanos Par 21/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transcripción Genética/genética , Regiones no Traducidas 5'/genética , Fraccionamiento Celular/métodos , Línea Celular Transformada , Línea Celular Tumoral , Centrifugación por Gradiente de Densidad , Genómica/métodos , Células HeLa , Humanos , Polirribosomas/metabolismo , ARN/genética , ARN/aislamiento & purificación , ARN/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Virus Res ; 140(1-2): 40-8, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19084562

RESUMEN

Reverse genetics has facilitated the use of non-segmented negative strand RNA viruses (NNSV) as vectors. Currently, heterologous gene expression necessitates insertion of extra-numeral transcription units (ENTUs), which may alter the NNSV polar transcription gradient and attenuate growth relative to wild-type (Wt). We hypothesized that rescuing recombinant Sendai Virus (rSeV) with a bicistronic gene might circumvent this attenuation but still allow heterologous open reading frame (ORF) expression. Therefore, we used a 9-nucleotide sequence previously described with internal ribosome entry site (IRES) activity, which, when constructed as several repeats, synergistically increased the level of expression of the second cistron [Chappell, S.A., Edelman, G.M., Mauro, V.P., 2000. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. U.S.A. 97, 1536-1541]. We inserted the Renilla luciferase (rLuc) ORF, preceded by 1, 3 or 7 IRES copies, downstream of the SeV N ORF in an infectious clone. Corresponding rSeVs were successfully rescued. Interestingly, bicistronic rSeVs grew as fast as or faster than Wt rSeV. Furthermore, SeV gene transcription downstream of the N/rLuc gene was either equivalent to, or slightly enhanced, compared to Wt rSeV. Importantly, all rSeV/rLuc viruses efficiently expressed rLuc. IRES repetition increased rLuc expression at a multiplicity of infection of 0.1, although without evidence of synergistic enhancement. In conclusion, our approach provides a novel way of insertion and expression of foreign genes in NNSVs.


Asunto(s)
Vectores Genéticos , ARN/genética , Proteínas Recombinantes/biosíntesis , Virus Sendai/genética , Animales , Secuencia de Bases , Línea Celular , ADN Complementario/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Humanos , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/genética , Sistemas de Lectura Abierta , Plásmidos , ARN Viral/genética , Virus Sendai/crecimiento & desarrollo , Transcripción Genética
19.
BMC Med Genomics ; 1: 33, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18673536

RESUMEN

BACKGROUND: Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background. METHODS: We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out). For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation. RESULTS: High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug. CONCLUSION: The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of a particular drug in a living cell.

20.
Immunity ; 28(5): 651-61, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18439848

RESUMEN

Upon detection of viral RNA, the helicases RIG-I and/or MDA5 trigger, via their adaptor Cardif (also known as IPS-1, MAVS, or VISA), the activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce an antiviral type I interferon (IFN) response. FADD and RIP1, known as mediators of death-receptor signaling, are implicated in this antiviral pathway; however, the link between death-receptor and antiviral signaling is not known. Here we showed that TRADD, a crucial adaptor of tumor necrosis factor receptor (TNFRI), was important in RIG-like helicase (RLH)-mediated signal transduction. TRADD is recruited to Cardif and orchestrated complex formation with the E3 ubiquitin ligase TRAF3 and TANK and with FADD and RIP1, leading to the activation of IRF3 and NF-kappaB. Loss of TRADD prevented Cardif-dependent activation of IFN-beta, reduced the production of IFN-beta in response to RNA viruses, and enhanced vesicular stomatitis virus replication. Thus, TRADD is not only an essential component of proinflammatory TNFRI signaling, but is also required for RLH-Cardif-dependent antiviral immune responses.


Asunto(s)
ADN Helicasas/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Infecciones por Rhabdoviridae/inmunología , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Vesiculovirus/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular , Infecciones por Rhabdoviridae/virología , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/inmunología , Factor 3 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Vesiculovirus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...