Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2102: 3-15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31989547

RESUMEN

Toxicology is a broad field that requires the translation of biochemical responses to xenobiotic exposures into useable information to ensure the safety of the public. Modern techniques are improving rapidly, both quantitatively and qualitatively, to provide the tools necessary to expand available toxicological datasets and refine our ability to translate that data into relevant information via bioinformatics. These new techniques can, and do, impact many of the current critical roles in toxicology, including the environmental, forensic, preclinical/clinical, and regulatory realms. One area of rapid expansion is our understanding of bioenergetics, or the study of the transformation of energy in living organisms, and new mathematical approaches are needed to interpret these large datasets. As bioenergetics are intimately involved in the regulation of how and when a cell responds to xenobiotics, monitoring these changes (i.e., metabolic fluctuations) in cells/tissues post-exposure provides an approach to define the temporal scale of pharmacodynamic responses, which can be used to guide additional toxicological techniques (e.g., "omics"). This chapter will summarize important in vitro assays and in vivo imaging techniques to take real-time measurements. Using this information, our laboratory has utilized bioenergetics to identify significant time points of pharmacodynamic relevance as well as forecast the cell's eventual fate.


Asunto(s)
Bioensayo/métodos , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Toxicología/métodos , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , 4-Cloro-7-nitrobenzofurazano/farmacología , Adenosina Trifosfato/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Desoxiglucosa/análogos & derivados , Desoxiglucosa/metabolismo , Desoxiglucosa/farmacología , Metabolismo Energético/efectos de los fármacos , Fluorodesoxiglucosa F18/metabolismo , Humanos , Técnicas In Vitro , Verde de Indocianina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , NAD/metabolismo , NADP/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Flujo de Trabajo , Xenobióticos
2.
Cytokine ; 106: 136-147, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29103821

RESUMEN

Investigations of cellular responses involved in injury and repair processes have generated valuable information contributing to the advancement of wound healing and treatments. Intra- and extracellular regulators of healing mechanisms, such as cytokines, signaling proteins, and growth factors, have been described to possess significant roles in facilitating optimal recovery. This study explored a collection of 30 spatiotemporal responses comprised of cytokines (IL-1α, IL-1ß, IL-2, IL-6, TNF-α, MIP-1α), intracellular proteins (Akt, c-Jun, CREB, ERK1/2, JNK, MEK1, p38, p53, p90RSK), phosphorylated proteins (p-Akt, p-c-Jun, p-CREB, p-ERK1/2, p-GSK-3α/ß, p-HSP27, p-IκBα, p-JNK, p-MEK1, p-p38, p-p70S6K, p-p90RSK, p-STAT2, p-STAT3), and a protease (Caspase-3), measured in skeletal muscle tissue following a traumatic injury (rodent Gustilo IIIB fracture). To optimize the analysis of context-specific data sets, a network centrality parameter approach was used to assess the impact of each response in relation to all other measured responses. This approach identified proteins that were substantially amplified and potentially central in the wound healing network by evaluation of their corresponding centrality parameter, radiality. Network analysis allowed us to distinguish the progression of healing that occurred at certain time points and regions of injury. Notably, new tissue formation was proposed to occur by 168 h post-injury in severely injured tissue, while tissue 1-cm away from the site of injury that experienced relatively minor injury appeared to exhibit signs of new tissue formation as early as 24 h post-injury. In particular, hallmarks of inflammation, cytokines IL-1ß, IL-6, and IL-2, appear to have a pronounced impact at earlier time points (0-24 h post-injury), while intracellular proteins involved in cell proliferation, differentiation, or proteolysis (c-Jun, CREB, JNK, p38, p-c-Jun; p-MEK1, p-p38, p-STAT3) are more significant at later times (24-168 h). Overall, this study demonstrates the feasibility of a network analysis approach to extract significant information and also offers a spatiotemporal visualization of the intra- and extracellular signaling responses that regulate healing mechanisms.


Asunto(s)
Citocinas/metabolismo , Espacio Extracelular/metabolismo , Espacio Intracelular/metabolismo , Transducción de Señal , Heridas y Lesiones/metabolismo , Animales , Caspasa 3/metabolismo , Fracturas del Fémur/metabolismo , Fracturas del Fémur/patología , Masculino , Músculos/metabolismo , Fosforilación , Ratas Sprague-Dawley , Factores de Tiempo , Heridas y Lesiones/patología
3.
Cytokine ; 79: 12-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26702931

RESUMEN

Molecular mechanisms of wound healing have been extensively characterized, providing a better understanding of the processes involved in wound repair and offering advances in treatment methods. Both spatial and temporal investigations of injury biomarkers have helped to pinpoint significant time points and locations during the recovery process, which may be vital in managing the injury and making the appropriate diagnosis. This study addresses spatial and temporal differences of phosphoproteins found in skeletal muscle tissue following a traumatic femur fracture, which were further compared to co-localized cytokine responses. In particular, several proteins (Akt, ERK, c-Jun, CREB, JNK, MEK1, and p38) and post-translational phosphorylations (p-Akt, p-c-Jun, p-CREB, p-ERK1/2, p-MEK1, p-p38, p-GSK3α/ß, p-HSP27, p-p70S6K, and p-STAT3) associated with inflammation, new tissue formation, and remodeling were found to exhibit significant spatial and temporal differences in response to the traumatic injury. Quadratic discriminant analysis of all measured responses, including cytokine concentrations from previously published findings, was used to classify temporal and spatial observations at high predictive rates, further confirming that distinct spatiotemporal distributions for total protein, phosphorylation signaling, and cytokine (IL-1α, IL-1ß, IL2, IL6, TNF-α, and MIP-1α) responses exist. Finally, phosphoprotein measurements were found to be significantly correlated to cytokine concentrations, suggesting coordinated intracellular and extracellular activity during crucial periods of repair. This study represents a first attempt to monitor and assess integrated changes in extracellular and intracellular signaling in response to a traumatic injury in muscle tissues, which may provide a framework for future research to improve both our understanding of wounds and their treatment options.


Asunto(s)
Citocinas/metabolismo , Fracturas del Fémur/patología , Fémur/lesiones , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Análisis Espacio-Temporal , Animales , Masculino , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Cicatrización de Heridas/fisiología
4.
Toxicol Sci ; 140(2): 338-51, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24824809

RESUMEN

The rapid pharmacodynamic response of cells to toxic xenobiotics is primarily coordinated by signal transduction networks, which follow a simple framework: the phosphorylation/dephosphorylation cycle mediated by kinases and phosphatases. However, the time course from initial pharmacodynamic response(s) to cell death following exposure can have a vast range. Viewing this time lag between early signaling events and the ultimate cellular response as an opportunity, we hypothesize that monitoring the phosphorylation of proteins related to cell death and survival pathways at key, early time points may be used to forecast a cell's eventual fate, provided that we can measure and accurately interpret the protein responses. In this paper, we focused on a three-phased approach to forecast cell death after exposure: (1) determine time points relevant to important signaling events (protein phosphorylation) by using estimations of adenosine triphosphate production to reflect the relationship between mitochondrial-driven energy metabolism and kinase response, (2) experimentally determine phosphorylation values for proteins related to cell death and/or survival pathways at these significant time points, and (3) use cluster analysis to predict the dose-response relationship between cellular exposure to a xenobiotic and plasma membrane degradation at 24 h post-exposure. To test this approach, we exposed HepG2 cells to two disparate treatments: a GSK-3ß inhibitor and a MEK inhibitor. After using our three-phased approach, we were able to accurately forecast the 24 h HepG2 plasma membrane degradation dose-response from protein phosphorylation values as early as 20 min post-MEK inhibitor exposure and 40 min post-GSK-3ß exposure.


Asunto(s)
Muerte Celular , Transducción de Señal , Adenosina Trifosfato/metabolismo , Análisis por Conglomerados , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Fosforilación
5.
Cytokine ; 66(2): 112-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24461742

RESUMEN

Temporal changes in cytokine concentrations following traumatic injuries have been extensively studied. Less is known regarding spatial differences in cytokine concentrations following traumatic injury. The primary aim of this study was to determine the spatial relationship between cytokines and the zone of injury (ZOI). Muscle and vessel tissues obtained from rats subjected to an open femoral fracture were analyzed to determine if spatial cytokine gradients exist that could potentially be used as biomarkers of the ZOI. Samples were collected at 4 time points following fracture from 3 distinct locations: at the fracture site, 1-cm away from the fracture, and from the opposite leg. The concentrations of IL-6, IL-1α, IL-1ß, IL-2, GM-CSF, TNF-α, and MIP-1α were quantified in each sample. Temporally and spatially regulated variations in cytokine concentrations were found. IL-6 showed the most promise as a ZOI biomarker with statistically different spatial concentrations that were inversely proportional to the distance from the fracture in both tissues. IL-1ß and IL-2 also showed spatial differences in concentration in both tissues, while GM-CSF, MIP-1α, and TNF-α showed spatial differences in vessel samples. These results demonstrate that spatial cytokine gradients exist following traumatic injury, representing potential biomarkers that may be used to define the ZOI.


Asunto(s)
Biomarcadores/metabolismo , Citocinas/metabolismo , Fracturas del Fémur/metabolismo , Distribución Tisular/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Cicatrización de Heridas
6.
Chem Res Toxicol ; 27(1): 17-26, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24359296

RESUMEN

Modern toxicological evaluations have evolved to consider toxicity as a perturbation of biological pathways or networks. As such, toxicity testing approaches are shifting from common end point evaluations to pathway based approaches, where the degree of perturbation of select biological pathways is monitored. These new approaches are greatly increasing the data available to toxicologists, but methods of analyses to determine the inter-relationships between potentially affected pathways are needed to fully understand the consequences of exposure. An approach to construct dose-response curves that use graph theory to describe network perturbations among three disparate mitogen-activated protein kinase (MAPK) pathways is presented. Mitochondrial stress was induced in human hepatocytes (HepG2) by exposing the cells to increasing doses of the complex I inhibitor, deguelin. The relative phosphorylation responses of proteins involved in the regulation of the stress response were measured. Graph theory was applied to the phosphorylation data to obtain parameters describing the network perturbations at each individual dose tested. The graph theory results depicted the dynamic nature of the relationship between p38, JNK, and ERK1/2 under conditions of mitochondrial stress and revealed shifts in the relationships between these MAPK pathways at low doses. The inter-relationship, or crosstalk, among these 3 traditionally linear MAPK cascades was further probed by coexposing cells to deguelin plus SB202190 (JNK and p38 inhibitor) or deguelin plus SB202474 (JNK inhibitor). The cells exposed to deguelin plus SB202474 resulted in significantly decreased viability, which could be visualized and attributed to the decrease of ERK1/2 network centrality. The approach presented here allows for the construction and visualization of dose-response curves that describe network perturbations induced by chemical stress, which provides an informative and sensitive means of assessing toxicological effects on biological systems.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Rotenona/análogos & derivados , Rotenona/farmacología , Relación Estructura-Actividad , Pruebas de Toxicidad , Células Tumorales Cultivadas
7.
Toxicon ; 74: 83-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23933198

RESUMEN

The pharmaceutical world has greatly benefited from the well-characterized structure-function relationships of toxins with endogenous biomolecules, such as ion-channels, receptors, and signaling molecules. Thus, therapeutics derived from toxins have been aggressively pursued. However, the multifunctional role of various toxins may lead to undesirable off-target effects, hindering their use as therapeutic agents. In this paper, we suggest that previously unsuccessful toxins (due to off-target effects) may be revisited with mixtures by utilizing the pharmacodynamic response to the potential primary therapeutic as a starting point for finding new targets to ameliorate the unintended responses. In this proof of principle study, the pharmacodynamic response of HepG2 cells to a potential primary therapeutic (deguelin, a plant-derived chemopreventive agent) was monitored, and a possible secondary target (p38MAPK) was identified. As a single agent, deguelin decreased cellular viability at higher doses (>10 µM), but inhibited oxygen consumption over a wide dosing range (1.0-100 µM). Our results demonstrate that inhibition of oxygen consumption is related to an increase in p38MAPK phosphorylation, and may only be an undesired side effect of deguelin (i.e., one that does not contribute to the decrease in HepG2 viability). We further show that deguelin's negative effect on oxygen consumption can be diminished while maintaining efficacy when used as a therapeutic mixture with the judiciously selected secondary inhibitor (SB202190, p38MAPK inhibitor). These preliminary findings suggest that an endogenous response-directed mixtures approach, which uses a pharmacodynamic response to a primary therapeutic to determine a secondary target, allows previously unsuccessful toxins to be revisited as therapeutic mixtures.


Asunto(s)
Extractos Vegetales/farmacología , Rotenona/análogos & derivados , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos , Imidazoles/farmacología , Oxígeno/metabolismo , Fosforilación , Piridinas/farmacología , Rotenona/farmacología , Relación Estructura-Actividad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...