Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Audiol Res ; 14(1): 96-115, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38391766

RESUMEN

The third window syndrome, often associated with the Tullio phenomenon, is currently most often observed in patients with a superior semicircular-canal dehiscence (SCD) but is not specific to this pathology. Clinical and vestibular tests suggestive of this pathology are not always concomitantly observed and have been recently complemented by the skull-vibration-induced nystagmus test, which constitutes a bone-conducted Tullio phenomenon (BCTP). The aim of this work was to collect from the literature the insights given by this bedside test performed with bone-conducted stimulations in SCD. The PRISMA guidelines were used, and 10 publications were included and analyzed. Skull vibration-induced nystagmus (SVIN), as observed in 55 to 100% of SCD patients, usually signals SCD with greater sensitivity than the air-conducted Tullio phenomenon (ACTP) or the Hennebert sign. The SVIN direction when the test is performed on the vertex location at 100 Hz is most often ipsilaterally beating in 82% of cases for the horizontal and torsional components and down-beating for the vertical component. Vertex stimulations are more efficient than mastoid stimulations at 100 Hz but are equivalent at higher frequencies. SVIN efficiency may depend on stimulus location, order, and duration. In SCD, SVIN frequency sensitivity is extended toward high frequencies, with around 400 Hz being optimal. SVIN direction may depend in 25% on stimulus frequency and in 50% on stimulus location. Mastoid stimulations show frequently diverging results following the side of stimulation. An after-nystagmus observed in 25% of cases can be interpreted in light of recent physiological data showing two modes of activation: (1) cycle-by-cycle phase-locked activation of action potentials in SCC afferents with irregular resting discharge; (2) cupula deflection by fluid streaming caused by the travelling waves of fluid displacement initiated by sound or vibration at the point of the dehiscence. The SVIN direction and intensity may result from these two mechanisms' competition. This instability explains the SVIN variability following stimulus location and frequency observed in some patients but also discrepancies between investigators. SVIN is a recent useful insight among other bedside examination tests for the diagnosis of SCD in clinical practice.

2.
Audiol Res ; 13(6): 910-928, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37987337

RESUMEN

Both auditory and vestibular primary afferent neurons can be activated by sound and vibration. This review relates the differences between them to the different receptor/synaptic mechanisms of the two systems, as shown by indicators of peripheral function-cochlear and vestibular compound action potentials (cCAPs and vCAPs)-to click stimulation as recorded in animal studies. Sound- and vibration-sensitive type 1 receptors at the striola of the utricular macula are enveloped by the unique calyx afferent ending, which has three modes of synaptic transmission. Glutamate is the transmitter for both cochlear and vestibular primary afferents; however, blocking glutamate transmission has very little effect on vCAPs but greatly reduces cCAPs. We suggest that the ultrafast non-quantal synaptic mechanism called resistive coupling is the cause of the short latency vestibular afferent responses and related results-failure of transmitter blockade, masking, and temporal precision. This "ultrafast" non-quantal transmission is effectively electrical coupling that is dependent on the membrane potentials of the calyx and the type 1 receptor. The major clinical implication is that decreasing stimulus rise time increases vCAP response, corresponding to the increased VEMP response in human subjects. Short rise times are optimal in human clinical VEMP testing, whereas long rise times are mandatory for audiometric threshold testing.

3.
J Neurosci ; 43(43): 7149-7157, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37775302

RESUMEN

Amniotes evolved a unique postsynaptic terminal in the inner ear vestibular organs called the calyx that receives both quantal and nonquantal (NQ) synaptic inputs from Type I sensory hair cells. The nonquantal synaptic current includes an ultrafast component that has been hypothesized to underlie the exceptionally high synchronization index (vector strength) of vestibular afferent neurons in response to sound and vibration. Here, we present three lines of evidence supporting the hypothesis that nonquantal transmission is responsible for synchronized vestibular action potentials of short latency in the guinea pig utricle of either sex. First, synchronized vestibular nerve responses are unchanged after administration of the AMPA receptor antagonist CNQX, while auditory nerve responses are completely abolished. Second, stimulus evoked vestibular nerve compound action potentials (vCAP) are shown to occur without measurable synaptic delay and three times shorter than the latency of auditory nerve compound action potentials (cCAP), relative to the generation of extracellular receptor potentials. Third, paired-pulse stimuli designed to deplete the readily releasable pool (RRP) of synaptic vesicles in hair cells reveal forward masking in guinea pig auditory cCAPs, but a complete lack of forward masking in vestibular vCAPs. Results support the conclusion that the fast component of nonquantal transmission at calyceal synapses is indefatigable and responsible for ultrafast responses of vestibular organs evoked by transient stimuli.SIGNIFICANCE STATEMENT The mammalian vestibular system drives some of the fastest reflex pathways in the nervous system, ensuring stable gaze and postural control for locomotion on land. To achieve this, terrestrial amniotes evolved a large, unique calyx afferent terminal which completely envelopes one or more presynaptic vestibular hair cells, which transmits mechanosensory signals mediated by quantal and nonquantal (NQ) synaptic transmission. We present several lines of evidence in the guinea pig which reveals the most sensitive vestibular afferents are remarkably fast, much faster than their auditory nerve counterparts. Here, we present neurophysiological and pharmacological evidence that demonstrates this vestibular speed advantage arises from ultrafast NQ electrical synaptic transmission from Type I hair cells to their calyx partners.


Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Animales , Cobayas , Potenciales de Acción/fisiología , Células Ciliadas Vestibulares/fisiología , Transmisión Sináptica/fisiología , Sinapsis/fisiología , Mamíferos
4.
Audiol Res ; 13(3): 418-430, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37366683

RESUMEN

Angular acceleration stimulation of a semicircular canal causes an increased firing rate in primary canal afferent neurons that result in nystagmus in healthy adult animals. However, increased firing rate in canal afferent neurons can also be caused by sound or vibration in patients after a semicircular canal dehiscence, and so these unusual stimuli will also cause nystagmus. The recent data and model by Iversen and Rabbitt show that sound or vibration may increase firing rate either by neural activation locked to the individual cycles of the stimulus or by slow changes in firing rate due to fluid pumping ("acoustic streaming"), which causes cupula deflection. Both mechanisms will act to increase the primary afferent firing rate and so trigger nystagmus. The primary afferent data in guinea pigs indicate that in some situations, these two mechanisms may oppose each other. This review has shown how these three clinical phenomena-skull vibration-induced nystagmus, enhanced vestibular evoked myogenic potentials, and the Tullio phenomenon-have a common tie: they are caused by the new response of semicircular canal afferent neurons to sound and vibration after a semicircular canal dehiscence.

5.
Sci Rep ; 13(1): 10204, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353559

RESUMEN

To examine mechanisms responsible for vestibular afferent sensitivity to transient bone conducted vibration, we performed simultaneous measurements of stimulus-evoked vestibular compound action potentials (vCAPs), utricular macula velocity, and vestibular microphonics (VMs) in anaesthetized guinea pigs. Results provide new insights into the kinematic variables of transient motion responsible for triggering mammalian vCAPs, revealing synchronized vestibular afferent responses are not universally sensitive to linear jerk as previously thought. For short duration stimuli (< 1 ms), the vCAP increases magnitude in close proportion to macular velocity and temporal bone (linear) acceleration, rather than other kinematic elements. For longer duration stimuli, the vCAP magnitude switches from temporal bone acceleration sensitive to linear jerk sensitive while maintaining macular velocity sensitivity. Frequency tuning curves evoked by tone-burst stimuli show vCAPs increase in proportion to onset macular velocity, while VMs increase in proportion to macular displacement across the entire frequency bandwidth tested between 0.1 and 2 kHz. The subset of vestibular afferent neurons responsible for synchronized firing and vCAPs have been shown previously to make calyceal synaptic contacts with type I hair cells in the striolar region of the epithelium and have irregularly spaced inter-spike intervals at rest. Present results provide new insight into mechanical and neural mechanisms underlying synchronized action potentials in these sensitive afferents, with clinical relevance for understanding the activation and tuning of neurons responsible for driving rapid compensatory reflex responses.


Asunto(s)
Conducción Ósea , Vestíbulo del Laberinto , Animales , Cobayas , Conducción Ósea/fisiología , Potenciales de Acción , Vestíbulo del Laberinto/fisiología , Vibración , Neuronas Aferentes/fisiología , Mamíferos
6.
Front Neurol ; 14: 1183040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360355

RESUMEN

Nystagmus produced in response to air-conducted sound (ACS) stimulation-the Tullio phenomenon-is well known in patients with a semicircular canal (SCC) dehiscence (SCD). Here we consider the evidence that bone-conducted vibration (BCV) is also an effective stimulus for generating the Tullio phenomenon. We relate the clinical evidence based on clinical data extracted from literature to the recent evidence about the physical mechanism by which BCV may cause this nystagmus and the neural evidence confirming the likely mechanism. The hypothetical physical mechanism by which BCV activates SCC afferent neurons in SCD patients is that traveling waves are generated in the endolymph, initiated at the site of the dehiscence. We contend that the nystagmus and symptoms observed after cranial BCV in SCD patients is a variant of Skull Vibration Induced Nystagmus (SVIN) used to identify unilateral vestibular loss (uVL) with the major difference being that in uVL the nystagmus beats away from the affected ear whereas in Tullio to BCV the nystagmus beats usually toward the affected ear with the SCD. We suggest that the cause of this difference is a cycle-by-cycle activation of SCC afferents from the remaining ear, which are not canceled centrally by simultaneous afferent input from the opposite ear, because of its reduced or absent function in uVL. In the Tullio phenomenon, this cycle-by-cycle neural activation is complemented by fluid streaming and thus cupula deflection caused by the repeated compression of each cycle of the stimuli. In this way, the Tullio phenomenon to BCV is a version of skull vibration-induced nystagmus.

7.
Otol Neurotol ; 44(6): e419-e427, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37254257

RESUMEN

OBJECT: Vestibular evoked myogenic potentials (VEMPs) and the subjective visual horizontal (SVH) (or vertical [SVV]) have both been considered tests of otolith function: ocular-VEMPs (oVEMPs) utricular function, cervical VEMPs (cVEMPs) saccular function. Some studies have reported association between decreased oVEMPs and SVH, whereas others have not. DESIGN: A retrospective study of test results. SETTING: A tertiary, neuro-otology clinic, Royal Prince Alfred Hospital, Sydney, Australia. METHOD: We analyzed results in 130 patients with acute vestibular neuritis tested within 5 days of onset. We sought correlations between the SVH, oVEMPs, and cVEMPs to air-conducted (AC) and bone-conducted (BC) stimulation. RESULTS: The SVH deviated to the side of lesion, in 123 of the 130 AVN patients, by 2.5 to 26.7 degrees. Ninety of the AVN patients (70%) had abnormal oVEMPs to AC, BC or both stimuli, on the AVN side (mean asymmetry ratio ± SD [SE]): (64 ± 45.0% [3.9]). Forty-three of the patients (35%) had impaired cVEMPs to AC, BC or both stimuli, on the AVN side, [22 ± 41.6% (4.1)]. The 90 patients with abnormal oVEMP values also had abnormal SVH. Correlations revealed a significant relationship between SVH offset and oVEMP asymmetry (r = 0.80, p < 0.001) and a weaker relationship between SVH offset and cVEMP asymmetry (r = 0.56, p < 0.001). CONCLUSIONS: These results indicate that after an acute unilateral vestibular lesion, before there has been a chance for vestibular compensation to occur, there is a significant correlation between the SVH, and oVEMP results. The relationship between SVH offset and oVEMP amplitude suggests that both tests measure utricular function.


Asunto(s)
Potenciales Vestibulares Miogénicos Evocados , Neuronitis Vestibular , Vestíbulo del Laberinto , Humanos , Potenciales Vestibulares Miogénicos Evocados/fisiología , Neuronitis Vestibular/diagnóstico , Estudios Retrospectivos , Ojo
8.
Front Neurol ; 14: 1147253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114229

RESUMEN

This paper is concerned mainly with the assumptions underpinning the actual testing procedure, measurement, and interpretation of the video head impulse test-vHIT. Other papers have reported in detail the artifacts which can interfere with obtaining accurate eye movement results, but here we focus not on artifacts, but on the basic questions about the assumptions and geometrical considerations by which vHIT works. These matters are crucial in understanding and appropriately interpreting the results obtained, especially as vHIT is now being applied to central disorders. The interpretation of the eye velocity responses relies on thorough knowledge of the factors which can affect the response-for example the orientation of the goggles on the head, the head pitch, and the contribution of vertical canals to the horizontal canal response. We highlight some of these issues and point to future developments and improvements. The paper assumes knowledge of how vHIT testing is conducted.

9.
Front Neurol ; 14: 1109506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051057

RESUMEN

Introduction: Calyx bearing vestibular afferent neurons innervating type I hair cells in the striolar region of the utricle are exquisitely sensitive to auditory-frequency air conducted sound (ACS) and bone conducted vibration (BCV). Here, we present experimental data and a mathematical model of utricular mechanics and vestibular compound action potential generation (vCAP) in response to clinically relevant levels of ACS and BCV. Vibration of the otoconial layer relative to the sensory epithelium was simulated using a Newtonian two-degree-of-freedom spring-mass-damper system, action potential timing was simulated using an empirical model, and vCAPs were simulated by convolving responses of the population of sensitive neurons with an empirical extracellular voltage kernel. The model was validated by comparison to macular vibration and vCAPs recorded in the guinea pig, in vivo. Results: Transient stimuli evoked short-latency vCAPs that scaled in magnitude and timing with hair bundle mechanical shear rate for both ACS and BCV. For pulse BCV stimuli with durations <0.8 ms, the vCAP magnitude increased in proportion to temporal bone acceleration, but for pulse durations >0.9 ms the magnitude increased in proportion to temporal bone jerk. Once validated using ACS and BCV data, the model was applied to predict blast-induced hair bundle shear, with results predicting acute mechanical damage to bundles immediately upon exposure. Discussion: Results demonstrate the switch from linear acceleration to linear jerk as the adequate stimulus arises entirely from mechanical factors controlling the dynamics of sensory hair bundle deflection. The model describes the switch in terms of the mechanical natural frequencies of vibration, which vary between species based on morphology and mechanical factors.

10.
Sci Rep ; 13(1): 4840, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964237

RESUMEN

Our sense of balance is among the most central of our sensory systems, particularly in the evolution of human positional behavior. The peripheral vestibular system (PVS) comprises the organs responsible for this sense; the semicircular canals (detecting angular acceleration) and otolith organs (utricle and saccule; detecting linear acceleration, vibration, and head tilt). Reconstructing vestibular evolution in the human lineage, however, is problematic. In contrast to considerable study of the canals, relationships between external bone and internal membranous otolith organs (otolith system) remain largely unexplored. This limits our understanding of vestibular functional morphology. This study combines spherical harmonic modeling and landmark-based shape analyses to model the configuration of the human otolith system. Our approach serves two aims: (1) test the hypothesis that bony form covaries with internal membranous anatomy; and (2) create a 3D morphometric model visualizing bony and membranous structure. Results demonstrate significant associations between bony and membranous tissues of the otolith system. These data provide the first evidence that external structure of the human otolith system is directly related to internal anatomy, suggesting a basic biological relationship. Our results visualize this structural relationship, offering new avenues into vestibular biomechanical modeling and assessing the evolution of the human balance system.


Asunto(s)
Membrana Otolítica , Vestíbulo del Laberinto , Humanos , Canales Semicirculares , Sáculo y Utrículo , Ambiente
11.
Audiol Res ; 12(5): 457-465, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36136853

RESUMEN

As previously reported, a single test measuring oVEMP n10 to 4000 Hz stimuli (bone-conducted vibration (BCV) or air-conducted sound (ACS)) provides a definitive diagnosis of semicircular canal dehiscence (SCD) in 22 CT-verified patients, with a sensitivity of 1.0 and specificity of 1.0. This single short screening test has great advantages of speed, minimizing testing time, and the exposure of patients to stimulation. However, a few studies of the 4000 Hz test for SCD have reported sensitivity and specificity values which are slightly less than reported previously. We hypothesized that the rise time of the stimulus is important for detecting the oVEMP n10 to 4000 Hz, similarly to what we had shown for 500 and 750 Hz BCV. We measured oVEMP n10 in 15 patients with CT-verified SCD in response to 4000 Hz ACS or BCV stimuli with rise times of 0, 1, and 2 ms. As a result, increasing the rise time of the stimulus reduced the oVEMP n10 amplitude. This outcome is expected from the physiological evidence of guinea pig primary vestibular afferents, which are activated by sound or vibration. Therefore, for clinical VEMP testing, short rise times are optimal (preferably 0 ms).

12.
J Assoc Res Otolaryngol ; 23(5): 633-645, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35804276

RESUMEN

The sensory end-organs responsible for hearing and balance in the mammalian inner ear are connected via a small membranous duct known as the ductus reuniens (also known as the reuniting duct (DR)). The DR serves as a vital nexus linking the hearing and balance systems by providing the only endolymphatic connection between the cochlea and vestibular labyrinth. Recent studies have hypothesized new roles of the DR in inner ear function and disease, but a lack of knowledge regarding its 3D morphology and spatial configuration precludes testing of such hypotheses. We reconstructed the 3D morphology of the DR and surrounding anatomy using osmium tetroxide micro-computed tomography and digital visualizations of three human inner ear specimens. This provides a detailed, quantitative description of the DR's morphology, spatial relationships to surrounding structures, and an estimation of its orientation relative to head position. Univariate measurements of the DR, inner ear, and cranial planes were taken using the software packages 3D Slicer and Zbrush. The DR forms a narrow, curved, flattened tube varying in lumen size, shape, and wall thickness, with its middle third being the narrowest. The DR runs in a shallow bony sulcus superior to the osseus spiral lamina and adjacent to a ridge of bone that we term the "crista reuniens" oriented posteromedially within the cranium. The DR's morphology and structural configuration relative to surrounding anatomy has important implications for understanding aspects of inner ear function and disease, particularly after surgical alteration of the labyrinth and potential causative factors for Ménière's disease.


Asunto(s)
Vestíbulo del Laberinto , Humanos , Audición , Enfermedad de Meniere/diagnóstico por imagen , Vestíbulo del Laberinto/anatomía & histología , Vestíbulo del Laberinto/diagnóstico por imagen , Microtomografía por Rayos X
15.
J Clin Med ; 11(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35207405

RESUMEN

An ongoing EU Horizon 2020 Project called BionicVEST is investigating the effect of constant electrical stimulation (ES) of the inferior vestibular nerve in patients with bilateral vestibular dysfunction (BVD). The evidence is that constant ES results in improved postural stability and gait performance, and so the question of central importance concerns how constant ES of mainly saccular afferents in these BVD patients could cause this improved performance. We suggest that the constant ES substitutes for the absent saccular neural input to the vestibular nuclei and the cerebellum in these BVD patients and indirectly via these structures to other structures, which have been of great recent interest in motor control. One target area, the anterior midline cerebellum (the uvula), has recently been targeted as a location for deep-brain stimulation in human patients to improve postural stability and gait. There are projections from midline cerebellum to basal ganglia, including the striatum, which are structures involved in the initiation of gait. It may be that the effect of this activation of peripheral saccular afferent neurons is analogous to the effect of deep-brain stimulation (DBS) by electrodes in basal ganglia acting to help alleviate the symptoms of patients with Parkinson's disease.

16.
J Vestib Res ; 32(3): 295-304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34459428

RESUMEN

BACKGROUND: Dizziness is a common perioperative complication after cochlear implantation (CI). To date, the exact cause behind this phenomenon remains unclear. There is recent evidence to suggest that otolith function, specifically utricular, may be affected shortly after CI surgery, however whether these changes are related to patient symptoms has not yet been investigated. OBJECTIVE: To determine whether CI surgery and perioperative dizziness is associated with changes in utricular function. METHODS: We performed an observational study on patients undergoing routine CI surgery. Utricular function was assessed using the Subjective Visual Vertical (SVV), and perioperative dizziness was determined using a questionnaire. The study followed patients before surgery and then again 1-day, 1-week and 6-weeks after implantation. RESULTS: Forty-one adult CI recipients participated in the study. The SVV deviated away from the operated ear by an average of 2.17° a day after implantation, 0.889° 1 week and -0.25° 6 weeks after surgery. Dizziness contributed to a tilt of 0.5° away from the implanted ear. These deviations were statistically significant. CONCLUSIONS: CI surgery causes utricular hyperfunction in the operated ear that resolves over 6 weeks. SVV tilts were greater in participants experiencing dizziness, suggesting that utricular hyperfunction may contribute to the dizziness.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Implantación Coclear/efectos adversos , Implantes Cocleares/efectos adversos , Mareo/etiología , Humanos , Membrana Otolítica , Vértigo/complicaciones
17.
Anat Rec (Hoboken) ; 305(5): 1037-1050, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34021723

RESUMEN

The inner ear contains the end organs for balance (vestibular labyrinth) and hearing (cochlea). The vestibular labyrinth is comprised of the semicircular canals (detecting angular acceleration) and otolith organs (utricle and saccule, which detect linear acceleration and head tilt relative to gravity). Lying just inferior to the utricle is the membranous membrana limitans (ML). Acting as a keystone to vestibular geometry, the ML provides support for the utricular macula and acts as a structural boundary between the superior (pars superior) and inferior (pars inferior) portions of the vestibular labyrinth. Given its importance in vestibular form, understanding ML morphology is valuable in establishing the spatial organization of other vestibular structures, particularly the utricular macula. Knowledge of the 3D structure and variation of the ML, however, remain elusive. Our study addresses this knowledge gap by visualizing, in 3D, the ML and surrounding structures using micro-CT data. By doing so, we attempt to clarify: (a) the variation of ML shape; (b) the reliability of ML attachment sites; and (c) the spatial relationship of the ML to the stapes footplate using landmark-based Generalized Procrustes, Principal Component and covariance analyses. Results indicate a consistent configuration of three distinct bony ML attachments including an anterolateral, medial, and posterior attachment which all covary with bony structure. Our results set the stage for further understanding into vestibular and more specifically, utricular macula spatial configuration within the human head, offering the potential to aid in clinical and evolutionary studies which rely on a 3D understanding of vestibular spatial configuration.


Asunto(s)
Imagenología Tridimensional , Vestíbulo del Laberinto , Evolución Biológica , Humanos , Reproducibilidad de los Resultados , Canales Semicirculares/diagnóstico por imagen , Vestíbulo del Laberinto/anatomía & histología , Vestíbulo del Laberinto/diagnóstico por imagen
18.
J Vestib Res ; 32(3): 261-269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34151877

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a common multi-system neurodegenerative disorder with possible vestibular system dysfunction, but prior vestibular function test findings are equivocal. OBJECTIVE: To report and compare vestibulo-ocular reflex (VOR) gain as measured by the video head impulse test (vHIT) in participants with PD, including tremor dominant and postural instability/gait dysfunction phenotypes, with healthy controls (HC). METHODS: Forty participants with PD and 40 age- and gender-matched HC had their vestibular function assessed. Lateral and vertical semicircular canal VOR gains were measured with vHIT. VOR canal gains between PD participants and HC were compared with independent samples t-tests. Two distinct PD phenotypes were compared to HC using Tukey's ANOVA. The relationship of VOR gain with PD duration, phenotype, severity and age were investigated using logistic regression. RESULTS: There were no significant differences between groups in vHIT VOR gain for lateral or vertical canals. There was no evidence of an effect of PD severity, phenotype or age on VOR gains in the PD group. CONCLUSION: The impulsive angular VOR pathways are not significantly affected by the pathophysiological changes associated with mild to moderate PD.


Asunto(s)
Enfermedad de Parkinson , Vestíbulo del Laberinto , Prueba de Impulso Cefálico , Humanos , Enfermedad de Parkinson/diagnóstico , Reflejo Vestibuloocular/fisiología , Canales Semicirculares/fisiología
19.
Front Surg ; 8: 727672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957197

RESUMEN

Reduced eye velocity and overt or covert compensatory saccades during horizontal head impulse testing are the signs of reduced vestibular function. However, here we report the unusual case of a patient who had enhanced eye velocity during horizontal head impulses followed by a corrective saccade. We term this saccade a "backup saccade" because it acts to compensate for the gaze position error caused by the enhanced velocity (and enhanced VOR gain) and acts to return gaze directly to the fixation target as shown by eye position records. We distinguish backup saccades from overt or covert compensatory saccades or the anticompensatory quick eye movement (ACQEM) of Heuberger et al. (1) ACQEMs are anticompensatory in that they are in the same direction as head velocity and so, act to take gaze off the target and thus require later compensatory (overt) saccades to return gaze to the target. Neither of these responses were found in this patient. The patient here was diagnosed with unilateral definite Meniere's disease (MD) on the right and had enhanced VOR (gain of 1.17) for rightward head impulses followed by backup saccades. For leftwards head impulses eye velocity and VOR gain were in the normal range (VOR gain of 0.89). As further confirmation, testing with 1.84 Hz horizontal sinusoidal head movements in the visual-vestibular (VVOR) paradigm also showed these backup saccades for rightwards head turns but normal slow phase eye velocity responses without backup saccades for leftwards had turns. This evidence shows that backup saccades can be observed in some MD patients who show enhanced eye velocity responses during vHIT and that these backup saccades act to correct for gaze position error caused by the enhanced eye velocity during the head impulse and so have a compensatory effect on gaze stabilization.

20.
Otol Neurotol ; 42(10): 1585-1593, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34766952

RESUMEN

OBJECTIVE: After 160 years the true underlying cause of Meniere's disease remains enigmatic. The aim of our study is to discuss the possible implication of an obstruction of the ductus reuniens as a cause in Menière's disease. METHODOLOGY: We first conducted an historical study of the description of the ductus reuniens. We then reviewed the literature regarding ductus reuniens obstruction in animal experiments, human post-mortem studies and living ear imaging. We completed its description by modern microCT imaging. Limited knowledge on the fate of dislodged saccular otoconia is summarized. The possible implications for Meniere's attacks are discussed. RESULTS: Victor Hensen was the first to describe the ductus reuniens in 1863. He described its length and width and predicted that saccular otoconia might enter the ductus and the cochlea. On microCT the narrowest width of the human ductus reuniens was 0.14 mm. The literature reports cochlear endolymphatic hydrops occurring after animal experimental obstruction of the duct. Human postmortem studies have confirmed saccular otoconial clumps entering the ductus and the cochlea. A postmortem study has shown sites of endolymphatic obstruction, and imaging speculates on blockages in ears with Meniere's disease. Dislodged utricular otoconia can be in clumps of otolithic membranes. CONCLUSION: Blockages of the ductus reuniens and at other endolymphatic system sites appear to be a feature in Meniere's disease ears. The blockages have been postulated to be saccular otoconia either causing or aggravating hydrops. This could be consistent with observed nystagmus reversals during attacks as the endolymphatic sac attempts to clear the hydrops and the otoconia.


Asunto(s)
Hidropesía Endolinfática , Saco Endolinfático , Enfermedad de Meniere , Animales , Cóclea , Endolinfa , Hidropesía Endolinfática/complicaciones , Hidropesía Endolinfática/diagnóstico por imagen , Humanos , Masculino , Enfermedad de Meniere/complicaciones , Enfermedad de Meniere/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...