Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Avian Dis ; 67(4): 427-440, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38300661

RESUMEN

This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.


Estudio recapitulativo- Vacunas para controlar Salmonella en la avicultura. Esta revisión se centra en describir y analizar los medios mediante los cuales las cepas de serotipo de Salmonella enterica han sido modificadas genéticamente con el propósito de desarrollar vacunas seguras y eficaces para proteger contra la enfermedad inducida por Salmonella en la avicultura y prevenir la colonización de las aves por Salmonella para reducir la transmisión a través de la cadena alimentaria por la contaminación en el interior y exterior del huevo y en los productos cárnicos de origen avícola. Se hace hincapié en el uso de medios desarrollados recientemente para generar mutaciones definidas de deleción para eliminar secuencias genéticas que confieren resistencia contra los antimicrobianos o elementos residuales que podrían conducir a inestabilidad genética. Se analizan los problemas asociados con los medios anteriores para desarrollar vacunas y se presentan diversos medios mediante los cuales estos problemas se han reducido, si no eliminado. También se discuten las consideraciones prácticas para facilitar medios para transferir a condiciones comerciales y de mercado, los procedimientos de vacunación y candidatos a vacunas que han sido exitosos mediante pruebas en el lab-oratorio para beneficiar a la industria avícola.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonella enterica , Vacunas , Animales , Aves de Corral , Enfermedades de las Aves de Corral/prevención & control , Salmonella/genética
2.
Mucosal Immunol ; 17(2): 169-181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38215909

RESUMEN

Streptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd+ plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant. The recombinant strain produced outer membrane vesicles (OMVs) enclosing a high amount of PspA protein (designated as OMV-PspA). A prime-boost intramuscular immunization with OMV-PspA induced both memory adaptive and innate immune responses in vaccinated mice, reduced the viral and bacterial burden, and provided complete protection against influenza-mediated secondary Spn infection. Also, the OMV-PspA immunization afforded significant cross-protection against the secondary Spn A66.1 infection and long-term protection against the secondary Spn D39 challenge. Our study implies that an OMV vaccine delivering Spn antigens can be a new promising pneumococcal vaccine candidate.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones Neumocócicas , Animales , Ratones , Humanos , Streptococcus pneumoniae , Vacunas Neumococicas , Vacunas Bacterianas , Proteínas Bacterianas/genética , Infecciones Neumocócicas/prevención & control , Anticuerpos Antibacterianos , Ratones Endogámicos BALB C
3.
Biomolecules ; 14(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275762

RESUMEN

Infectious bronchitis (IB) is a highly infectious viral disease of chickens which causes significant economic losses in the poultry industry worldwide. An effective vaccine against IB is urgently needed to provide both biosafety and high-efficiency immune protection. In this study, the S1 protein of the infectious bronchitis virus was delivered by a recombinant attenuated Salmonella typhimurium vector to form the vaccine candidate χ11246(pYA4545-S1). S. typhimurium χ11246 carried a sifA- mutation with regulated delayed systems, striking a balance between host safety and immunogenicity. Here, we demonstrated that S1 protein is highly expressed in HD11 cells. Immunization with χ11246(pYA4545-S1) induced the production of antibody and cytokine, leading to an effective immune response against IB. Oral immunization with χ11246(pYA4545-S1) provided 72%, 56%, and 56% protection in the lacrimal gland, trachea, and cloaca against infectious bronchitis virus infection, respectively. Furthermore, it significantly reduced histopathological lesions in chickens. Together, this study provides a new idea for the prevention of IB.


Asunto(s)
Virus de la Bronquitis Infecciosa , Vacunas Virales , Animales , Pollos , Virus de la Bronquitis Infecciosa/genética , Salmonella typhimurium/genética , Inmunización
4.
Adv Sci (Weinh) ; 10(33): e2303568, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37867213

RESUMEN

Engineered vector-based in vivo protein delivery platforms have made significant progress for both prophylactic and therapeutic applications. However, the lack of effective release strategies results in foreign cargo being trapped within the vector, restricting the provision of significant performance benefits and enhanced therapeutic results compared to traditional vaccines. Herein, the development of a Salmonella mRNA interferase regulation vector (SIRV) system is reported to overcome this challenge. The genetic circuits are engineered that (1) induce self-lysis to release foreign antigens into target cells and (2) activate the cytosolic surveillance cGAS-STING axis by releasing DNA into the cytoplasm. Delayed synthesis of the MazF interferase regulates differential mRNA cleavage, resulting in a 36-fold increase in the delivery of foreign antigens and modest activation of the inflammasome, which collectively contribute to the marked maturation of antigen-presenting cells (APCs). Bacteria delivering the protective antigen SaoA exhibits excellent immunogenicity and safety in mouse and pig models, significantly improving the survival rate of animals challenged with multiple serotypes of Streptococcus suis. Thus, the SIRV system enables the effective integration of various modular components and antigen cargos, allowing for the generation of an extensive range of intracellular protein delivery systems using multiple bacterial species in a highly efficient manner.


Asunto(s)
Antígenos Bacterianos , Vacunas Bacterianas , Animales , Ratones , Porcinos , Vacunas Bacterianas/genética , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , ARN Mensajero , Muerte Celular , Bacterias
5.
Vaccines (Basel) ; 11(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37766146

RESUMEN

We implemented a unique strategy to construct a recombinant attenuated Edwardsiella vaccine (RAEV) with a biological containment phenotype that causes regulated bacterial cell wall lysis. This process ensures that the vaccine strain is not able to persist in the environment. The murA gene is responsible for the catalysis of one of the first steps in the biosynthesis of muramic acid, which is a crucial component of the bacterial cell wall. The regulated lysis phenotype was achieved by inserting the tightly regulated araC ParaBAD cassette in place of the chromosomal murA promoter. Strains with this mutation require growth media supplemented with arabinose in order to survive. Without arabinose, they are unable to synthesize the peptidoglycan cell wall. Following the colonization of fish lymphoid tissues, the murA protein is no longer synthesized due to the lack of arabinose. Lysis is subsequently achieved in vivo, thus preventing the generation of disease symptoms and the spread of the strain into the environment. Vaccine strain χ16016 with the genotype ΔPmurA180::TT araC ParaBADmurA is attenuated and shows a higher LD50 value than that of the wild-type strain. Studies have demonstrated that χ16016 induced TLR4, TLR5, TLR8, TLR9, NOD1 and NOD2-mediated NF-κB pathways and upregulated the gene expression of various cytokines, such as il-8, il-1ß, tnf-a, il-6 and ifn-γ in catfish. We observed significant upregulation of the expression profiles of cd4, cd8 and mhc-II genes in different organs of vaccinated catfish. Vaccine strain χ16016 induced systemic and mucosal IgM titers and conferred significant protection to catfish against E. piscicida wild-type challenge. Our lysis RAEV is the first live attenuated vaccine candidate designed to be used in the aquaculture industry that displays this biological containment property.

6.
Front Immunol ; 13: 1034683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466847

RESUMEN

Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.


Asunto(s)
Helicobacter pylori , Vacunas contra la Salmonella , Ratones , Animales , Estómago , Antígenos Bacterianos/genética , Pruebas Inmunológicas
7.
mSphere ; 7(4): e0021022, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913142

RESUMEN

The discovery that biomechanical forces regulate microbial virulence was established with the finding that physiological low fluid shear (LFS) forces altered gene expression, stress responses, and virulence of the enteric pathogen Salmonella enterica serovar Typhimurium during the log phase. These log phase LFS-induced phenotypes were independent of the master stress response regulator, RpoS (σS). Given the central importance of RpoS in regulating stationary-phase stress responses of S. Typhimurium cultured under conventional shake flask and static conditions, we examined its role in stationary-phase cultures grown under physiological LFS. We constructed an isogenic rpoS mutant derivative of wild-type S. Typhimurium and compared the ability of these strains to survive in vitro pathogenesis-related stresses that mimic those encountered in the infected host and environment. We also compared the ability of these strains to colonize (adhere, invade, and survive within) human intestinal epithelial cell cultures. Unexpectedly, LFS-induced resistance of stationary-phase S. Typhimurium cultures to acid and bile salts stresses did not rely on RpoS. Likewise, RpoS was dispensable for stationary-phase LFS cultures to adhere to and survive within intestinal epithelial cells. In contrast, the resistance of these cultures to challenges of oxidative and thermal stresses, and their invasion into intestinal epithelial cells was influenced by RpoS. These findings expand our mechanistic understanding of how physiological fluid shear forces modulate stationary-phase S. Typhimurium physiology in unexpected ways and provide clues into microbial mechanobiology and nuances of Salmonella responses to microenvironmental niches in the infected host. IMPORTANCE Bacterial pathogens respond dynamically to a variety of stresses in the infected host, including physical forces of fluid flow (fluid shear) across their surfaces. While pathogens experience wide fluctuations in fluid shear during infection, little is known about how these forces regulate microbial pathogenesis. This is especially important for stationary-phase bacterial growth, which is a critical period to understand microbial resistance, survival, and infection potential, and is regulated in many bacteria by the general stationary-phase stress response protein RpoS. Here, we showed that, unlike conventional culture conditions, several stationary-phase Salmonella pathogenic stress responses were not impacted by RpoS when bacteria were cultured under fluid shear conditions relevant to those encountered in the intestine of the infected host. These findings offer new insight into how physiological fluid shear forces encountered by Salmonella during infection might impact pathogenic responses in unexpected ways that are relevant to their disease-causing ability.


Asunto(s)
Salmonella typhimurium , Factor sigma , Ácidos/metabolismo , Proteínas Bacterianas/metabolismo , Humanos , Salmonella typhimurium/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Virulencia/genética
8.
Nat Microbiol ; 7(7): 1087-1099, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668113

RESUMEN

Group 3 innate lymphoid cells (ILC3s) produce interleukin (IL)-22 and coordinate with other cells in the gut to mount productive host immunity against bacterial infection. However, the role of ILC3s in Salmonella enterica serovar Typhimurium (S. Typhimurium) infection, which causes foodborne enteritis in humans, remains elusive. Here we show that S. Typhimurium exploits ILC3-produced IL-22 to promote its infection in mice. Specifically, S. Typhimurium secretes flagellin through activation of the TLR5-MyD88-IL-23 signalling pathway in antigen presenting cells (APCs) to selectively enhance IL-22 production by ILC3s, but not T cells. Deletion of ILC3s but not T cells in mice leads to better control of S. Typhimurium infection. We also show that S. Typhimurium can directly invade ILC3s and cause caspase-1-mediated ILC3 pyroptosis independently of flagellin. Genetic ablation of Casp1 in mice leads to increased ILC3 survival and IL-22 production, and enhanced S. Typhimurium infection. Collectively, our data suggest a key host defence mechanism against S. Typhimurium infection via induction of ILC3 death to limit intracellular bacteria and reduce IL-22 production.


Asunto(s)
Inmunidad Innata , Infecciones por Salmonella , Animales , Caspasa 1/metabolismo , Flagelina/metabolismo , Linfocitos/metabolismo , Ratones , Piroptosis , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/fisiología
9.
Proc Natl Acad Sci U S A ; 119(11): e2109667119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35275791

RESUMEN

SignificanceYersinia pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. This plague bacillus has been used as a biological weapon during human history and is currently one of the deadliest biological threats. Currently, no licensed plague vaccines are available in the Western world. Since an array of immunogens are enclosed in outer membrane vesicles (OMVs), immune responses elicited by OMVs against a diverse range of antigens may reduce the likelihood of antigen circumvention. Therefore, self-adjuvanting OMVs from a remodeled Yersinia pseudotuberculosis strain as a type of plague vaccine could diversify prophylactic choices and solve current vaccine limitations.


Asunto(s)
Antígenos Bacterianos , Lípido A , Vacuna contra la Peste , Peste , Proteínas Citotóxicas Formadoras de Poros , Yersinia pseudotuberculosis , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Dosificación Letal Mediana , Lípido A/genética , Lípido A/inmunología , Ratones , Peste/prevención & control , Vacuna contra la Peste/administración & dosificación , Vacuna contra la Peste/genética , Vacuna contra la Peste/inmunología , Plásmidos/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/inmunología , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/inmunología
10.
Poult Sci ; 101(2): 101592, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34922043

RESUMEN

Gram-positive Clostridium perfringens type G, the causative agent of necrotic enteritis (NE), has gained more attention in the poultry industry due to governmental restrictions on the use of growth-promoting antibiotics in poultry feed. Our previous work has proved that regulated delayed lysis Salmonella vaccines delivering a plasmid encoding an operon fusion of the nontoxic C-terminal adhesive part of alpha toxin and a GST-NetB toxin fusion were able to elicit significant protective immunity in broilers against C. perfringens challenge. We recently improved our S. Typhimurium antigen delivery vaccine strain by integrating a rhamnose-regulated O-antigen synthesis gene enabling a triple-sugar regulation system to control virulence, antigen-synthesis and lysis in vivo traits. The strain also includes a ΔsifA mutation that was previously shown to increase the immunogenicity of and level of protective immunity induced by Salmonella vectored influenza and Eimeria antigens. The new antigen-delivery vaccine vector system confers on the vaccine strain a safe profile and improved protection against C. perfringens challenge. The strain with the triple-sugar regulation system delivering a regulated lysis plasmid pG8R220 encoding the PlcC and GST-NetB antigens protected chickens at a similar level observed in antibiotic-treated chickens. Feed conversion and growth performance were also similar to antibiotic-treated chickens. These studies made use of a severe C. perfringens challenge with lesion formation and mortality enhanced by pre-exposure to Eimeria maxima oocysts. The vaccine achieved effectiveness through three different immunization routes, oral, spray and in drinking water. The vaccine has a potential for application in commercial hatcher and broiler-rearing conditions.


Asunto(s)
Toxinas Bacterianas , Infecciones por Clostridium , Enteritis , Enfermedades de las Aves de Corral , Vacunas contra la Salmonella , Animales , Pollos , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Clostridium perfringens , Enteritis/prevención & control , Enteritis/veterinaria , Necrosis/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Azúcares
11.
Microb Pathog ; 162: 105355, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34902537

RESUMEN

Vaccination remains the most effective approach for prevention and control of infectious diseases in aquaculture. Edwardsiella piscicida is a causative agent of edwardsiellosis leading to mass mortality in a variety of fish species, leading to huge economic losses in the aquaculture industry. In this study, we have deleted the aroA and phoP genes in E. piscicida and investigated the phenotype, degrees of attenuation, immunogenicity, and ability to confer immune protection in zebrafish host. Our vaccine strain χ16028 with genotype ΔaroA11 ΔphoP12, showed significantly reduced growth, motility, biofilm formation and intracellular replication compared to the wild-type strain J118. In this regard, χ16028 exhibited retarded colonization and attenuation phenotype in zebrafish. Studies showed that χ16028 induced TLR4 and TLR5 mediated NF-kB pathway and upregulated cytokine gene expression i.e., TNF-α, IL-1ß, IL-6, IL-8 and type-I IFN in zebrafish. Zebrafish immunized by intracoelomic injection (i.c.) with χ16028 showed systemic and mucosal IgM responses and protection against the wild-type E. piscicida i.c. injection challenge. However, the protection was only 25% in zebrafish following i.c. challenge. We speculate that our vaccine strain might be very attenuated; a booster dose may trigger better immune response and increase the percentage of survival to a more significant level.


Asunto(s)
Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Edwardsiella , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/prevención & control , Virulencia , Pez Cebra
12.
Microbes Infect ; 23(4-5): 104809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33753207

RESUMEN

The objective of this project was to conduct a feasibility study to determine whether the Brucella abortus S19 vaccine infects and persists in mice and determine whether S19 can be used as a challenge strain for vaccine trial studies. Groups of BALB/c mice were inoculated (intraperitoneally, subcutaneously, intranasally) and euthanized to determine colonization titers in the spleens and lungs. This study showed that S19 does infect and persist in the tissues of mice for 8 weeks and demonstrates that S19 can be used, safely and economically under BSL2 containment, as the challenge strain for future trials to evaluate vaccine efficacy.


Asunto(s)
Brucella abortus/clasificación , Brucella abortus/fisiología , Brucelosis/microbiología , Modelos Animales de Enfermedad , Animales , Brucelosis/patología , Femenino , Ratones , Ratones Endogámicos BALB C , Organismos Libres de Patógenos Específicos
14.
Front Immunol ; 12: 802760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145512

RESUMEN

We have successfully designed and constructed a RAEV vector system with regulated-delayed attenuation in vivo attributes that synthesizes Ichthyophthirius multifiliis (Ich) protective antigen IAG52B to enable vaccination of fish susceptible to edwardsiellosis and white spot disease. The first feature of this vaccine delivery system is an Edwardsiella piscicida strain carrying genomic deletions of asdA. AsdA is an enzyme necessary for the synthesis of diaminopimelic acid (DAP), which is an essential component of the peptidoglycan layer of the cell wall of Gram-negative bacteria. asdA mutant strains have obligate growth requirements for DAP in the medium or a plasmid vector with the wild-type asdA gene enabling synthesis of DAP. This balanced-lethal plasmid vector-host system in E. piscicida enables as a second feature the synthesis of recombinant antigens to induce protective immunity against fish pathogens. Recombinant protective antigen IAG52B from the fish pathogen I. multifiliis was synthesized by RAEV strains harboring the AsdA+ plasmid pG8R8029. The third feature of this vaccine strain is a regulated-delayed attenuation in vivo phenotype that is based on the replacement of an arabinose-regulated araC ParaBAD cassette for the promoters of the fur and crp genes of E. piscicida such that the expression of these genes is dependent on arabinose provided during growth. Thus, following colonization, the Fur and Crp proteins stop being synthesized due to the lack of arabinose and attenuation is progressively achieved in vivo to prevent generation of diseases symptoms. Our vaccine strain χ16022 with the genotype ΔasdA10 ΔPfur170::TT araC ParaBADfur ΔPcrp68::TT araC ParaBADcrp contains the AsdA+ plasmid, pG8R8029, which encodes the IAG52B antigen. Vaccine strain χ16022(pG8R8029) is attenuated and induces systemic and mucosal IgM titer against E. piscicida and Ich in zebrafish. In addition, transcript levels of tnf-α, il-1ß, il-6 and il-8 were significantly increased in different tissues of vaccinated zebrafish compared to unimmunized fish. Zebrafish vaccinated with χ16022(pG8R8029) showed 60% survival upon intracoelomic (i.c.) challenge with a lethal dose of virulent E. piscicida strain J118. Our RAEV system could be used as a generalized vaccine-vector system to protect teleost fish against multiple bacterial, viral and parasitic infectious diseases.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Edwardsiella/inmunología , Vectores Genéticos/genética , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Vacunas Bacterianas/administración & dosificación , Citocinas/genética , Citocinas/metabolismo , Edwardsiella/clasificación , Edwardsiella/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Orden Génico , Ingeniería Genética , Inmunidad Celular , Inmunidad Humoral , Inmunización , Inmunoglobulina M/inmunología , Modelos Moleculares , Mutación , Plásmidos/genética , Conformación Proteica , Relación Estructura-Actividad , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Pez Cebra
15.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33380455

RESUMEN

Streptococcus pneumoniae capsular polysaccharides (CPSs) are major determinants of bacterial pathogenicity. CPSs of different serotypes form the main components of the pneumococcal vaccines Pneumovax, Prevnar7, and Prevnar13, which substantially reduced the S. pneumoniae disease burden in developed countries. However, the laborious production processes of traditional polysaccharide-based vaccines have raised the cost of the vaccines and limited their impact in developing countries. The aim of this study is to develop a kind of low-cost live vaccine based on using the recombinant attenuated Salmonella vaccine (RASV) system to protect against pneumococcal infections. We cloned genes for seven different serotypes of CPSs to be expressed by the RASV strain. Oral immunization of mice with the RASV-CPS strains elicited robust Th1 biased adaptive immune responses. All the CPS-specific antisera mediated opsonophagocytic killing of the corresponding serotype of S. pneumoniae in vitro. The RASV-CPS2 and RASV-CPS3 strains provided efficient protection of mice against challenge infections with either S. pneumoniae strain D39 or WU2. Synthesis and delivery of S. pneumoniae CPSs using the RASV strains provide an innovative strategy for low-cost pneumococcal vaccine development, production, and use.


Asunto(s)
Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Femenino , Sueros Inmunes/inmunología , Inmunización/métodos , Inmunoglobulina G/genética , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/prevención & control , Polisacáridos/inmunología , Vacunas contra la Salmonella/farmacología , Serogrupo , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/inmunología
16.
Fish Shellfish Immunol ; 107(Pt B): 497-510, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33176201

RESUMEN

Edwardsiella piscicida is the etiological agent of edwardsiellosis in fish and causes severe economic losses in global aquaculture. Vaccination would be the most effective method to prevent infectious diseases and their associated economic losses. The ferric uptake regulator (Fur) is an important transcriptional global regulator of Gram-negative bacteria. In this study, we examined the regulatory function of Fur in E. piscicida. We designed a strain that displays features of the wild-type virulent strain of E. piscicida at the time of immunization to enable strains first to effectively colonize lymphoid tissues and then to exhibit a regulated delayed attenuation in vivo to preclude inducing disease symptoms. Regulated delayed attenuation in vivo is based on the substitution of a tightly regulated araC ParaBAD cassette for the promoter of the fur gene such that expression of this gene is dependent on arabinose provided during growth. Thus, following E. piscicida mutant colonization of lymphoid tissues, the Fur protein ceases to be synthesized due to the absence of arabinose such that attenuation is gradually manifest in vivo to preclude induction of diseases symptoms. We deleted the promoter, including all sequences that interact with activator or repressor proteins, for the fur gene, and substituted the improved araC ParaBAD cassette to yield an E. piscicida strain with the ΔPfur170:TT araC ParaBADfur deletion-insertion mutation (χ16012). Compared to the wild-type strain J118, χ16012 exhibited retarded growth and enhanced siderophore production in the absence of arabinose. mRNA levels of Fur-regulated genes were analyzed in iron deplete or replete condition in wild-type and fur mutant strains. We observed zebrafish immunized with χ16012 showed better colonization and protection compared to the Δfur (χ16001). Studies showed that E. piscicida strain χ16012 is attenuated and induces systemic and mucosal IgM titer in zebrafish. In addition, we found an increase in transcript levels of tnf-α, il-1ß, il-8 and ifn-γ in different tissues of zebrafish immunized with χ16012 compared to the unimmunized group. We conclude that, E. piscicida with regulated delayed attenuation could be an effective immersion vaccine for the aquaculture industry.


Asunto(s)
Proteínas Bacterianas/genética , Edwardsiella/inmunología , Edwardsiella/patogenicidad , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/inmunología , Proteínas Represoras/genética , Pez Cebra , Animales , Proteínas Bacterianas/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Enfermedades de los Peces/microbiología , Mutación , Proteínas Represoras/inmunología , Virulencia
17.
Avian Dis ; 64(3): 254-268, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112952

RESUMEN

A programmed self-destructive Salmonella vaccine delivery system was developed to facilitate efficient colonization in host tissues that allows release of the bacterial cell contents after lysis to stimulate mucosal, systemic, and cellular immunities against a diversity of pathogens. Adoption and modification of these technological improvements could form part of an integrated strategy for cost-effective control and prevention of infectious diseases, including those caused by parasitic pathogens. Avian coccidiosis is a common poultry disease caused by Eimeria. Coccidiosis has been controlled by medicating feed with anticoccidial drugs or administering vaccines containing low doses of virulent or attenuated Eimeria oocysts. Problems of drug resistance and nonuniform administration of these Eimeria resulting in variable immunity are prompting efforts to develop recombinant Eimeria vaccines. In this study, we designed, constructed, and evaluated a self-destructing recombinant attenuated Salmonella vaccine (RASV) lysis strain synthesizing the Eimeria tenella SO7 antigen. We showed that the RASV lysis strain χ11791(pYA5293) with a ΔsifA mutation enabling escape from the Salmonella-containing vesicle (or endosome) successfully colonized chicken lymphoid tissues and induced strong mucosal and cell-mediated immunities, which are critically important for protection against Eimeria challenge. The results from animal clinical trials show that this vaccine strain significantly increased food conversion efficiency and protection against weight gain depression after challenge with 105E. tenella oocysts with concomitant decreased oocyst output. More importantly, the programmed regulated lysis feature designed into this RASV strain promotes bacterial self-clearance from the host, lessening persistence of vaccine strains in vivo and survival if excreted, which is a critically important advantage in a vaccine for livestock animals. Our approach should provide a safe, cost-effective, and efficacious vaccine to control coccidiosis upon addition of additional protective Eimeria antigens. These improved RASVs can also be modified for use to control other parasitic diseases infecting other animal species.


Asunto(s)
Pollos , Coccidiosis/prevención & control , Eimeria tenella/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Antiprotozoos/administración & dosificación , Vacunas contra la Salmonella/administración & dosificación , Administración a través de la Mucosa , Animales , Masculino , Organismos Libres de Patógenos Específicos , Vacunas Atenuadas/administración & dosificación , Vacunas Sintéticas/administración & dosificación
18.
Vaccine ; 38(26): 4154-4161, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32376109

RESUMEN

In most attenuated Salmonella enterica vaccines, heterologous antigens are expressed under the control of strong inducible promoters to ensure a high level of synthesis. Although high expression levels of the antigen can improve the immunogenicity of the vaccine, they might be toxic to the Salmonella carrier. Expression problems could be avoided by the use of promoters with specific characteristics with respect to strength and timing of expression. To study the expression of ten selected promoters, translational promoter-green fluorescent protein (GFP) fusions were analyzed in three attenuated Salmonella strains, Ty21a, SL3261 and PhoPC. Promoter expression was evaluated both in vitro and in intracellular conditions using flow cytometry and confocal microscopy, with specific focus on the levels and timing of expression. We identified one major candidate promoter (Pasr) that could be used to express antigens specifically during in vivo conditions, without impairing bacterial growth during in vitro vaccine production.


Asunto(s)
Vacunas contra la Salmonella , Salmonella typhimurium , Vacunas Sintéticas , Animales , Anticuerpos Antibacterianos , Proteínas Bacterianas/genética , Ratones , Ratones Endogámicos BALB C , Regiones Promotoras Genéticas , Vacunas contra la Salmonella/genética , Salmonella typhimurium/inmunología , Vacunas Atenuadas , Vacunas Sintéticas/genética
19.
Nat Commun ; 11(1): 1978, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332737

RESUMEN

There is the notion that infection with a virulent intestinal pathogen induces generally stronger mucosal adaptive immunity than the exposure to an avirulent strain. Whether the associated mucosal inflammation is important or redundant for effective induction of immunity is, however, still unclear. Here we use a model of auxotrophic Salmonella infection in germ-free mice to show that live bacterial virulence factor-driven immunogenicity can be uncoupled from inflammatory pathogenicity. Although live auxotrophic Salmonella no longer causes inflammation, its mucosal virulence factors remain the main drivers of protective mucosal immunity; virulence factor-deficient, like killed, bacteria show reduced efficacy. Assessing the involvement of innate pathogen sensing mechanisms, we show MYD88/TRIF, Caspase-1/Caspase-11 inflammasome, and NOD1/NOD2 nodosome signaling to be individually redundant. In colonized animals we show that microbiota metabolite cross-feeding may recover intestinal luminal colonization but not pathogenicity. Consequent immunoglobulin A immunity and microbial niche competition synergistically protect against Salmonella wild-type infection.


Asunto(s)
Inmunidad Mucosa , Mucosa Intestinal/microbiología , Infecciones por Salmonella/microbiología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Antígenos Bacterianos , Caspasa 1/metabolismo , Caspasas Iniciadoras/metabolismo , Proliferación Celular , Microbioma Gastrointestinal , Inmunidad Innata , Inmunoglobulina A/inmunología , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Salmonella typhimurium/patogenicidad , Transducción de Señal , Virulencia , Factores de Virulencia
20.
Proc Natl Acad Sci U S A ; 117(1): 602-609, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31836694

RESUMEN

Vitamin B12 (VB12) is a critical micronutrient that controls DNA metabolic pathways to maintain the host genomic stability and tissue homeostasis. We recently reported that the newly discovered commensal Propionibacterium, P. UF1, regulates the intestinal immunity to resist pathogen infection, which may be attributed in part to VB12 produced by this bacterium. Here we demonstrate that VB12 synthesized by P. UF1 is highly dependent on cobA gene-encoding uroporphyrinogen III methyltransferase, and that this vitamin distinctively regulates the cobA operon through its 5' untranslated region (5' UTR). Furthermore, conserved secondary structure and mutagenesis analyses revealed a VB12-riboswitch, cbiMCbl (140 bp), within the 5' UTR that controls the expression of downstream genes. Intriguingly, ablation of the cbiMCbl significantly dysregulates the biosynthesis of VB12, illuminating the significance of this riboswitch for bacterial VB12 biosynthesis. Collectively, our finding is an in-depth report underscoring the regulation of VB12 within the beneficial P. UF1 bacterium, through which the commensal metabolic network may improve gut bacterial cross-feeding and human health.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Propionibacterium/metabolismo , Riboswitch/genética , Vitamina B 12/biosíntesis , Regiones no Traducidas 5'/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal/fisiología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutagénesis Sitio-Dirigida , Operón/genética , Probióticos/metabolismo , Propionibacterium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...