Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biosci Rep ; 38(4)2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29472314

RESUMEN

Protein-protein interactions have become attractive targets for both experimental and therapeutic interventions. The PSD-95/Dlg1/ZO-1 (PDZ) domain is found in a large family of eukaryotic scaffold proteins that plays important roles in intracellular trafficking and localization of many target proteins. Here, we seek inhibitors of the PDZ protein that facilitates post-endocytic degradation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR): the CFTR-associated ligand (CAL). We develop and validate biochemical screens and identify methyl-3,4-dephostatin (MD) and its analog ethyl-3,4-dephostatin (ED) as CAL PDZ inhibitors. Depending on conditions, MD can bind either covalently or non-covalently. Crystallographic and NMR data confirm that MD attacks a pocket at a site distinct from the canonical peptide-binding groove, and suggests an allosteric connection between target residue Cys319 and the conserved Leu291 in the GLGI motif. MD and ED thus appear to represent the first examples of small-molecule allosteric regulation of PDZ:peptide affinity. Their mechanism of action may exploit the known conformational plasticity of the PDZ domains and suggests that allosteric modulation may represent a strategy for targeting of this family of protein-protein binding modules.


Asunto(s)
Sitio Alostérico/efectos de los fármacos , Proteínas Portadoras/metabolismo , Hidroquinonas/química , Hidroquinonas/farmacología , Proteínas de la Membrana/metabolismo , Dominios PDZ/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Regulación Alostérica/efectos de los fármacos , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Cristalografía por Rayos X , Cisteína/química , Cisteína/metabolismo , Proteínas de la Matriz de Golgi , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana , Metilación , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular
3.
Biochemistry ; 53(37): 5916-22, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25171053

RESUMEN

We have identified a series of small molecules that bind to the canonical peptide binding groove of the PDZ1 domain of NHERF1 and effectively compete with the association of the C-terminus of the parathyroid hormone 1 receptor (PTH1R). Employing nuclear magnetic resonance and molecular modeling, we characterize the mode of binding that involves the GYGF loop important for the association of the C-terminus of PTH1R. We demonstrate that the common core of the small molecules binds to the PDZ1 domain of NHERF1 and displaces a (15)N-labeled peptide corresponding to the C-terminus of PTH1R. The small size (molecular weight of 192) of this core scaffold makes it an excellent candidate for further elaboration in the development of an inhibitor for this important protein-protein interaction.


Asunto(s)
Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Polarización de Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Fosfoproteínas/química , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Intercambiadores de Sodio-Hidrógeno/química
4.
Structure ; 22(1): 82-93, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24210758

RESUMEN

PDZ domain interactions are involved in signaling and trafficking pathways that coordinate crucial cellular processes. Alignment-based PDZ binding motifs identify the few most favorable residues at certain positions along the peptide backbone. However, sequences that bind the CAL (CFTR-associated ligand) PDZ domain reveal only a degenerate motif that overpredicts the true number of high-affinity interactors. Here, we combine extended peptide-array motif analysis with biochemical techniques to show that non-motif "modulator" residues influence CAL binding. The crystallographic structures of 13 CAL:peptide complexes reveal defined, but accommodating stereochemical environments at non-motif positions, which are reflected in modulator preferences uncovered by multisequence substitutional arrays. These preferences facilitate the identification of high-affinity CAL binding sequences and differentially affect CAL and NHERF PDZ binding. As a result, they also help determine the specificity of a PDZ domain network that regulates the trafficking of CFTR at the apical membrane.


Asunto(s)
Proteínas Portadoras/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Proteínas de la Membrana/química , Dominios PDZ/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulación de la Expresión Génica , Proteínas de la Matriz de Golgi , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Análisis por Matrices de Proteínas , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transducción de Señal , Estereoisomerismo , Relación Estructura-Actividad , Termodinámica
5.
J Biol Chem ; 288(7): 5114-26, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23243314

RESUMEN

PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P(0)), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P(0) Leu or Ile residues reveals two distinct modes of accommodation for ß-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.


Asunto(s)
Ácidos Carboxílicos/química , Proteínas/química , Secuencias de Aminoácidos , Sitios de Unión , Cristalización , Cristalografía por Rayos X/métodos , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Leucina/química , Ligandos , Dominios PDZ , Péptidos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
7.
PLoS Comput Biol ; 8(4): e1002477, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22532795

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors"), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers") that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Diseño de Fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Dominios PDZ , Péptidos/química , Proteínas Adaptadoras Transductoras de Señales , Sitios de Unión , Simulación por Computador , Proteínas de la Matriz de Golgi , Proteínas de Transporte de Membrana , Modelos Químicos , Modelos Moleculares , Unión Proteica
8.
Artículo en Inglés | MEDLINE | ID: mdl-21543871

RESUMEN

Cystic fibrosis (CF) is associated with loss-of-function mutations in the CF transmembrane conductance regulator (CFTR), which regulates epithelial fluid and ion homeostasis. The CFTR cytoplasmic C-terminus interacts with a number of PDZ (PSD-95/Dlg/ZO-1) proteins that modulate its intracellular trafficking and chloride-channel activity. Among these, the CFTR-associated ligand (CAL) has a negative effect on apical-membrane expression levels of the most common disease-associated mutant ΔF508-CFTR, making CAL a candidate target for the treatment of CF. A selective peptide inhibitor of the CAL PDZ domain (iCAL36) has recently been developed and shown to stabilize apical expression of ΔF508-CFTR, enhancing net chloride-channel activity, both alone and in combination with the folding corrector corr-4a. As a basis for structural studies of the CAL-iCAL36 interaction, a purification protocol has been developed that increases the oligomeric homogeneity of the protein. Here, the cocrystallization of the complex in space group P2(1)2(1)2(1), with unit-cell parameters a = 35.9, b = 47.7, c = 97.3 Å, is reported. The crystals diffracted to 1.4 Å resolution. Based on the calculated Matthews coefficient (1.96 Å(3) Da(-1)), it appears that the asymmetric unit contains two complexes.


Asunto(s)
Proteínas Portadoras/química , Proteínas de la Membrana/química , Fragmentos de Péptidos/química , Proteasas Virales 3C , Proteínas Adaptadoras Transductoras de Señales , Cristalización , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Proteínas de la Matriz de Golgi , Proteínas de Transporte de Membrana , Rhinovirus/enzimología , Proteínas Virales/química
11.
Biochemistry ; 47(38): 10084-98, 2008 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-18754678

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis. Its expression and functional interactions in the apical membrane are regulated by several PDZ (PSD-95, discs large, zonula occludens-1) proteins, which mediate protein-protein interactions, typically by binding C-terminal recognition motifs. In particular, the CFTR-associated ligand (CAL) limits cell-surface levels of the most common disease-associated mutant DeltaF508-CFTR. CAL also mediates degradation of wild-type CFTR, targeting it to lysosomes following endocytosis. Nevertheless, wild-type CFTR survives numerous cycles of uptake and recycling. In doing so, how does it repeatedly avoid CAL-mediated degradation? One mechanism may involve competition between CAL and other PDZ proteins including Na (+)/H (+) exchanger-3 regulatory factors 1 and 2 (NHERF1 and NHERF2), which functionally stabilize cell-surface CFTR. Thus, to understand the biochemical basis of WT-CFTR persistence, we need to know the relative affinities of these partners. However, no quantitative binding data are available for CAL or the individual NHERF2 PDZ domains, and published estimates for the NHERF1 PDZ domains conflict. Here we demonstrate that the affinity of the CAL PDZ domain for the CFTR C-terminus is much weaker than those of NHERF1 and NHERF2 domains, enabling wild-type CFTR to avoid premature entrapment in the lysosomal pathway. At the same time, CAL's affinity is evidently sufficient to capture and degrade more rapidly cycling mutants, such as DeltaF508-CFTR. The relatively weak affinity of the CAL:CFTR interaction may provide a pharmacological window for stabilizing rescued DeltaF508-CFTR in patients with cystic fibrosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endocitosis/fisiología , Dominios PDZ/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Polarización de Fluorescencia , Proteínas de la Matriz de Golgi , Humanos , Ligandos , Lisosomas/química , Lisosomas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica/fisiología , Transducción de Señal/fisiología , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
12.
EMBO J ; 26(4): 1163-75, 2007 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-17290219

RESUMEN

Monoallelic RUNX1 mutations cause familial platelet disorder with predisposition for acute myelogenous leukemia (FPD/AML). Sporadic mono- and biallelic mutations are found at high frequencies in AML M0, in radiation-associated and therapy-related myelodysplastic syndrome and AML, and in isolated cases of AML M2, M5a, M3 relapse, and chronic myelogenous leukemia in blast phase. Mutations in RUNX2 cause the inherited skeletal disorder cleidocranial dysplasia (CCD). Most hematopoietic missense mutations in Runx1 involve DNA-contacting residues in the Runt domain, whereas the majority of CCD mutations in Runx2 are predicted to impair CBFbeta binding or the Runt domain structure. We introduced different classes of missense mutations into Runx1 and characterized their effects on DNA and CBFbeta binding by the Runt domain, and on Runx1 function in vivo. Mutations involving DNA-contacting residues severely inactivate Runx1 function, whereas mutations that affect CBFbeta binding but not DNA binding result in hypomorphic alleles. We conclude that hypomorphic RUNX2 alleles can cause CCD, whereas hematopoietic disease requires more severely inactivating RUNX1 mutations.


Asunto(s)
Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , ADN/metabolismo , Enfermedades Hematológicas/genética , Modelos Moleculares , Mutación Missense/genética , Estructura Terciaria de Proteína , Animales , Recuento de Células Sanguíneas , Western Blotting , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Cartilla de ADN , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Espectroscopía de Resonancia Magnética , Ratones , Espectrometría de Fluorescencia , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...