Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chem Res Toxicol ; 37(2): 181-198, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38316048

RESUMEN

A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., ß-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.


Asunto(s)
Carcinógenos , Nitrosaminas , Humanos , Animales , Carcinógenos/toxicidad , Nitrosaminas/toxicidad , Nitrosaminas/metabolismo , Mutágenos/toxicidad , Roedores/metabolismo , Carcinogénesis , Carbono , Pruebas de Mutagenicidad
2.
Regul Toxicol Pharmacol ; 135: 105247, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998738

RESUMEN

Under ICH M7, impurities are assessed using the bacterial reverse mutation assay (i.e., Ames test) when predicted positive using in silico methodologies followed by expert review. N-Nitrosamines (NAs) have been of recent concern as impurities in pharmaceuticals, mainly because of their potential to be highly potent mutagenic carcinogens in rodent bioassays. The purpose of this analysis was to determine the sensitivity of the Ames assay to predict the carcinogenic outcome with curated proprietary Vitic (n = 131) and Leadscope (n = 70) databases. NAs were selected if they had corresponding rodent carcinogenicity assays. Overall, the sensitivity/specificity of the Ames assay was 93-97% and 55-86%, respectively. The sensitivity of the Ames assay was not significantly impacted by plate incorporation (84-89%) versus preincubation (82-89%). Sensitivity was not significantly different between use of rat and hamster liver induced S9 (80-93% versus 77-96%). The sensitivity of the Ames is high when using DMSO as a solvent (87-88%). Based on the analysis of these databases, the Ames assay conducted under OECD 471 guidelines is highly sensitive for detecting the carcinogenic hazards of NAs.


Asunto(s)
Dimetilsulfóxido , Nitrosaminas , Animales , Bacterias , Bioensayo , Carcinógenos/toxicidad , Cricetinae , Mutación , Nitrosaminas/metabolismo , Nitrosaminas/toxicidad , Preparaciones Farmacéuticas , Ratas , Roedores/metabolismo , Solventes
3.
Comput Toxicol ; 242022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36818760

RESUMEN

Acute toxicity in silico models are being used to support an increasing number of application areas including (1) product research and development, (2) product approval and registration as well as (3) the transport, storage and handling of chemicals. The adoption of such models is being hindered, in part, because of a lack of guidance describing how to perform and document an in silico analysis. To address this issue, a framework for an acute toxicity hazard assessment is proposed. This framework combines results from different sources including in silico methods and in vitro or in vivo experiments. In silico methods that can assist the prediction of in vivo outcomes (i.e., LD50) are analyzed concluding that predictions obtained using in silico approaches are now well-suited for reliably supporting assessment of LD50-based acute toxicity for the purpose of GHS classification. A general overview is provided of the endpoints from in vitro studies commonly evaluated for predicting acute toxicity (e.g., cytotoxicity/cytolethality as well as assays targeting specific mechanisms). The increased understanding of pathways and key triggering mechanisms underlying toxicity and the increased availability of in vitro data allow for a shift away from assessments solely based on endpoints such as LD50, to mechanism-based endpoints that can be accurately assessed in vitro or by using in silico prediction models. This paper also highlights the importance of an expert review of all available information using weight-of-evidence considerations and illustrates, using a series of diverse practical use cases, how in silico approaches support the assessment of acute toxicity.

4.
Environ Mol Mutagen ; 62(9): 512-525, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34775645

RESUMEN

We present a hypothetical case study to examine the use of a next-generation framework developed by the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute for assessing the potential risk of genetic damage from a pharmaceutical perspective. We used etoposide, a genotoxic carcinogen, as a representative pharmaceutical for the purposes of this case study. Using the framework as guidance, we formulated a hypothetical scenario for the use of etoposide to illustrate the application of the framework to pharmaceuticals. We collected available data on etoposide considered relevant for assessment of genetic toxicity risk. From the data collected, we conducted a quantitative analysis to estimate margins of exposure (MOEs) to characterize the risk of genetic damage that could be used for decision-making regarding the predefined hypothetical use. We found the framework useful for guiding the selection of appropriate tests and selecting relevant endpoints that reflected the potential for genetic damage in patients. The risk characterization, presented as MOEs, allows decision makers to discern how much benefit is critical to balance any adverse effect(s) that may be induced by the pharmaceutical. Interestingly, pharmaceutical development already incorporates several aspects of the framework per regulations and health authority expectations. Moreover, we observed that quality dose response data can be obtained with carefully planned but routinely conducted genetic toxicity testing. This case study demonstrates the utility of the next-generation framework to quantitatively model human risk based on genetic damage, as applicable to pharmaceuticals.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Etopósido/efectos adversos , Animales , Daño del ADN , Genómica , Humanos
5.
Regul Toxicol Pharmacol ; 117: 104746, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32911461

RESUMEN

Pharmaceutic products designed to perturb the function of epigenetic modulators have been approved by regulatory authorities for treatment of advanced cancer. While the predominant effort in epigenetic drug development continues to be in oncology, non-oncology indications are also garnering interest. A survey of pharmaceutical companies was conducted to assess the interest and concerns for developing small molecule direct epigenetic effectors (EEs) as medicines. Survey themes addressed (1) general levels of interest and activity with EEs as therapeutic agents, (2) potential safety concerns, and (3) possible future efforts to develop targeted strategies for nonclinical safety assessment of EEs. Thirteen companies contributed data to the survey. Overall, the survey data indicate the consensus opinion that existing ICH guidelines are effective and appropriate for nonclinical safety assessment activities with EEs. Attention in the framework of study design should, on a case by case basis, be considered for delayed or latent toxicities, carcinogenicity, reproductive toxicity, and the theoretical potential for transgenerational effects. While current guidelines have been appropriate for the nonclinical safety assessments of epigenetic targets, broader experience with a wide range of epigenetic targets will provide information to assess the potential need for new or revised risk assessment strategies for EE drugs.


Asunto(s)
Industria Farmacéutica/normas , Control de Medicamentos y Narcóticos , Epigénesis Genética/efectos de los fármacos , Preparaciones Farmacéuticas/normas , Encuestas y Cuestionarios , Animales , Evaluación Preclínica de Medicamentos/normas , Evaluación Preclínica de Medicamentos/tendencias , Industria Farmacéutica/tendencias , Control de Medicamentos y Narcóticos/tendencias , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Epigénesis Genética/genética , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Medición de Riesgo/normas , Medición de Riesgo/tendencias
6.
Environ Mol Mutagen ; 61(1): 114-134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31603995

RESUMEN

In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Rutas de Resultados Adversos , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Aneuploidia , Animales , Aurora Quinasa A/antagonistas & inhibidores , Rotura Cromosómica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Pruebas de Mutagenicidad/métodos , Mutación/efectos de los fármacos
7.
Regul Toxicol Pharmacol ; 107: 104403, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31195068

RESUMEN

In silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol. The protocol outlines a hazard assessment framework including key effects/mechanisms and their relationships to endpoints such as gene mutation and clastogenicity. IST models and data are reviewed that support the assessment of these effects/mechanisms along with defined approaches for combining the information and evaluating the confidence in the assessment. This protocol has been developed through a consortium of toxicologists, computational scientists, and regulatory scientists across several industries to support the implementation and acceptance of in silico approaches.


Asunto(s)
Modelos Teóricos , Mutágenos/toxicidad , Proyectos de Investigación , Toxicología/métodos , Animales , Simulación por Computador , Humanos , Pruebas de Mutagenicidad , Medición de Riesgo
8.
Mutagenesis ; 34(1): 67-82, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189015

RESUMEN

(Quantitative) structure-activity relationship or (Q)SAR predictions of DNA-reactive mutagenicity are important to support both the design of new chemicals and the assessment of impurities, degradants, metabolites, extractables and leachables, as well as existing chemicals. Aromatic N-oxides represent a class of compounds that are often considered alerting for mutagenicity yet the scientific rationale of this structural alert is not clear and has been questioned. Because aromatic N-oxide-containing compounds may be encountered as impurities, degradants and metabolites, it is important to accurately predict mutagenicity of this chemical class. This article analysed a series of publicly available aromatic N-oxide data in search of supporting information. The article also used a previously developed structure-activity relationship (SAR) fingerprint methodology where a series of aromatic N-oxide substructures was generated and matched against public and proprietary databases, including pharmaceutical data. An assessment of the number of mutagenic and non-mutagenic compounds matching each substructure across all sources was used to understand whether the general class or any specific subclasses appear to lead to mutagenicity. This analysis resulted in a downgrade of the general aromatic N-oxide alert. However, it was determined there were enough public and proprietary data to assign the quindioxin and related chemicals as well as benzo[c][1,2,5]oxadiazole 1-oxide subclasses as alerts. The overall results of this analysis were incorporated into Leadscope's expert-rule-based model to enhance its predictive accuracy.


Asunto(s)
Óxidos N-Cíclicos/química , Daño del ADN/efectos de los fármacos , Mutágenos/química , Relación Estructura-Actividad Cuantitativa , Óxidos N-Cíclicos/toxicidad , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad , Mutágenos/toxicidad
9.
Regul Toxicol Pharmacol ; 102: 53-64, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30562600

RESUMEN

The International Council for Harmonization (ICH) M7 guideline describes a hazard assessment process for impurities that have the potential to be present in a drug substance or drug product. In the absence of adequate experimental bacterial mutagenicity data, (Q)SAR analysis may be used as a test to predict impurities' DNA reactive (mutagenic) potential. However, in certain situations, (Q)SAR software is unable to generate a positive or negative prediction either because of conflicting information or because the impurity is outside the applicability domain of the model. Such results present challenges in generating an overall mutagenicity prediction and highlight the importance of performing a thorough expert review. The following paper reviews pharmaceutical and regulatory experiences handling such situations. The paper also presents an analysis of proprietary data to help understand the likelihood of misclassifying a mutagenic impurity as non-mutagenic based on different combinations of (Q)SAR results. This information may be taken into consideration when supporting the (Q)SAR results with an expert review, especially when out-of-domain results are generated during a (Q)SAR evaluation.


Asunto(s)
Contaminación de Medicamentos , Guías como Asunto , Mutágenos/clasificación , Relación Estructura-Actividad Cuantitativa , Industria Farmacéutica , Agencias Gubernamentales , Mutágenos/toxicidad , Medición de Riesgo
10.
Regul Toxicol Pharmacol ; 96: 1-17, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29678766

RESUMEN

The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information.


Asunto(s)
Simulación por Computador , Pruebas de Toxicidad/métodos , Toxicología/métodos , Animales , Humanos
11.
Regul Toxicol Pharmacol ; 77: 13-24, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26877192

RESUMEN

The ICH M7 guideline describes a consistent approach to identify, categorize, and control DNA reactive, mutagenic, impurities in pharmaceutical products to limit the potential carcinogenic risk related to such impurities. This paper outlines a series of principles and procedures to consider when generating (Q)SAR assessments aligned with the ICH M7 guideline to be included in a regulatory submission. In the absence of adequate experimental data, the results from two complementary (Q)SAR methodologies may be combined to support an initial hazard classification. This may be followed by an assessment of additional information that serves as the basis for an expert review to support or refute the predictions. This paper elucidates scenarios where additional expert knowledge may be beneficial, what such an expert review may contain, and how the results and accompanying considerations may be documented. Furthermore, the use of these principles and procedures to yield a consistent and robust (Q)SAR-based argument to support impurity qualification for regulatory purposes is described in this manuscript.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Daño del ADN , Minería de Datos/métodos , Mutagénesis , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Toxicología/métodos , Animales , Pruebas de Carcinogenicidad/normas , Simulación por Computador , Bases de Datos Factuales , Adhesión a Directriz , Guías como Asunto , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Mutagenicidad/normas , Mutágenos/química , Mutágenos/clasificación , Formulación de Políticas , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo , Toxicología/legislación & jurisprudencia , Toxicología/normas
12.
Regul Toxicol Pharmacol ; 77: 1-12, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26879463

RESUMEN

Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guideline. Knowledge from proprietary corporate mutagenicity databases could be used to increase the predictive performance for selected chemical classes as well as expand the applicability domain of these (Q)SAR models. This paper outlines a mechanism for sharing knowledge without the release of proprietary data. Primary aromatic amine mutagenicity was selected as a case study because this chemical class is often encountered in pharmaceutical impurity analysis and mutagenicity of aromatic amines is currently difficult to predict. As part of this analysis, a series of aromatic amine substructures were defined and the number of mutagenic and non-mutagenic examples for each chemical substructure calculated across a series of public and proprietary mutagenicity databases. This information was pooled across all sources to identify structural classes that activate or deactivate aromatic amine mutagenicity. This structure activity knowledge, in combination with newly released primary aromatic amine data, was incorporated into Leadscope's expert rule-based and statistical-based (Q)SAR models where increased predictive performance was demonstrated.


Asunto(s)
Aminas/toxicidad , Minería de Datos/métodos , Bases del Conocimiento , Mutagénesis , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Aminas/química , Aminas/clasificación , Animales , Simulación por Computador , Bases de Datos Factuales , Humanos , Modelos Moleculares , Estructura Molecular , Mutágenos/química , Mutágenos/clasificación , Reconocimiento de Normas Patrones Automatizadas , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo
13.
Regul Toxicol Pharmacol ; 73(1): 367-77, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26248005

RESUMEN

The ICH M7 guidelines for the assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals allows for the consideration of in silico predictions in place of in vitro studies. This represents a significant advance in the acceptance of (Q)SAR models and has resulted from positive interactions between modellers, regulatory agencies and industry with a shared purpose of developing effective processes to minimise risk. This paper discusses key scientific principles that should be applied when evaluating in silico predictions with a focus on accuracy and scientific rigour that will support a consistent and practical route to regulatory submission.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Simulación por Computador/normas , ADN/química , Contaminación de Medicamentos/prevención & control , Mutágenos , Relación Estructura-Actividad Cuantitativa
14.
Environ Mol Mutagen ; 56(3): 277-85, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25482136

RESUMEN

Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Animales , District of Columbia , Epigénesis Genética/efectos de los fármacos , Genómica/métodos , Humanos , Medición de Riesgo
15.
Dev Biol ; 385(2): 279-90, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24252776

RESUMEN

Dosage compensation (DC) equalizes X-linked gene expression between sexes. In Caenorhabditis elegans, the dosage compensation complex (DCC) localizes to both X chromosomes in hermaphrodites and downregulates gene expression 2-fold. The DCC first localizes to hermaphrodite X chromosomes at the 30-cell stage, coincident with a developmental transition from plasticity to differentiation. To test whether DC onset is linked to loss of developmental plasticity, we established a timeline for the accumulation of DC-mediated chromatin features on X (depletion of histone H4 lysine 16 acetylation (H4K16ac) and enrichment of H4K20 monomethylation (H4K20me1)) in both wild type and developmentally delayed embryos. Surprisingly, we found that H4K16ac is depleted from the X even before the 30-cell stage in a DCC-independent manner. This depletion requires the activities of MES-2, MES-3, and MES-6 (a complex similar to the Polycomb Repressive Complex 2), and MES-4. By contrast, H4K20me1 becomes enriched on X chromosomes several cell cycles after DCC localization to the X, suggesting that it is a late mark in DC. MES-2 also promotes differentiation, and mes-2 mutant embryos exhibit prolonged developmental plasticity. Consistent with the hypothesis that the onset of DC is linked to differentiation, DCC localization and H4K20me1 accumulation on the X chromosomes are delayed in mes mutant hermaphrodite embryos. Furthermore, the onset of hermaphrodite-specific transcription of sdc-2 (which triggers DC) is delayed in mes-2 mutants. We propose that as embryonic blastomeres lose their developmental plasticity, hermaphrodite X chromosomes transition from a MES protein-regulated state to DCC-mediated repression.


Asunto(s)
Caenorhabditis elegans/genética , Compensación de Dosificación (Genética) , Animales , Caenorhabditis elegans/embriología , Cromatina/genética , Hibridación in Situ , Masculino , Interferencia de ARN
16.
Regul Toxicol Pharmacol ; 67(1): 39-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23669331

RESUMEN

Genotoxicity hazard identification is part of the impurity qualification process for drug substances and products, the first step of which being the prediction of their potential DNA reactivity using in silico (quantitative) structure-activity relationship (Q)SAR models/systems. This white paper provides information relevant to the development of the draft harmonized tripartite guideline ICH M7 on potentially DNA-reactive/mutagenic impurities in pharmaceuticals and their application in practice. It explains relevant (Q)SAR methodologies as well as the added value of expert knowledge. Moreover, the predictive value of the different methodologies analyzed in two surveys conveyed in the US and European pharmaceutical industry is compared: most pharmaceutical companies used a rule-based expert system as their primary methodology, yielding negative predictivity values of ⩾78% in all participating companies. A further increase (>90%) was often achieved by an additional expert review and/or a second QSAR methodology. Also in the latter case, an expert review was mandatory, especially when conflicting results were obtained. Based on the available data, we concluded that a rule-based expert system complemented by either expert knowledge or a second (Q)SAR model is appropriate. A maximal transparency of the assessment process (e.g. methods, results, arguments of weight-of-evidence approach) achieved by e.g. data sharing initiatives and the use of standards for reporting will enable regulators to fully understand the results of the analysis. Overall, the procedures presented here for structure-based assessment are considered appropriate for regulatory submissions in the scope of ICH M7.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/química , Mutágenos/toxicidad , Simulación por Computador , Daño del ADN , Contaminación de Medicamentos , Industria Farmacéutica/métodos , Relación Estructura-Actividad Cuantitativa
17.
Environ Mol Mutagen ; 53(6): 420-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22730284

RESUMEN

Combining multiple genetic toxicology endpoints into a single in vivo study, and/or integrating one or more genotoxicity assays into general toxicology studies, is attractive because it reduces animal use and enables comprehensive comparative analysis using toxicity, metabolism, and pharmacokinetic information from the same animal. This laboratory has developed flow cytometric scoring techniques for monitoring two blood-based genotoxicity endpoints-micronucleated reticulocyte frequency and gene mutation at the Pig-a locus-thereby making combination and integration studies practical. The ability to effectively monitor these endpoints in short-term and repeated dosing schedules was investigated with the carcinogen/noncarcinogen pair benzo(a)pyrene (BP) and pyrene (Pyr). Male Sprague-Dawley rats were treated via oral gavage for 3 or 28 consecutive days with several dose levels of Pyr, including maximum tolerated doses. BP exposure was administered by the same route but at one dose level, 250 or 125 mg/kg/day for 3-day and 28-day studies, respectively. Serial blood samples were collected up to Day 45, and were analyzed for Pig-a mutation with a dual labeling method (SYTO 13 in combination with anti-CD59-PE) that facilitated mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. A mutant cell enrichment step based on immunomagnetic column separation was used to increase the statistical power of the assay. BP induced robust mutant reticulocyte responses by Day 15, and elevated frequencies persisted until study termination. Mutant erythrocyte responses lagged mutant reticulocyte responses, with peak incidences observed on Day 30 of the 3-day study (43-fold increase) and on Day 42 of the 28-day study (171-fold increase). No mutagenic effects were apparent for Pyr. Blood samples collected on Day 4, and Day 29 for the 28-day study, were evaluated for micronucleated reticulocyte frequency. Significant increases in micronucleus frequencies were observed with BP, whereas Pyr had no effect. These results demonstrate that Pig-a and micronucleus endpoints discriminate between these structurally related carcinogenic and noncarcinogenic agents. Furthermore, the high sensitivity demonstrated with the enrichment protocol indicates that the Pig-a endpoint is suitable for both repeated-dose and acute studies, allowing integration of mutagenic and clastogenic endpoints into on-going toxicology studies, and use as a short-term assay that provides efficient screening and mechanistic information in vivo.


Asunto(s)
Benzo(a)pireno/toxicidad , Carcinógenos Ambientales/toxicidad , Citometría de Flujo/métodos , Mutación/efectos de los fármacos , Pirenos/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Sitios Genéticos , Masculino , Proteínas de la Membrana/genética , Pruebas de Micronúcleos , Ratas , Ratas Sprague-Dawley , Reticulocitos/efectos de los fármacos
18.
Genet Res Int ; 2012: 795069, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22567401

RESUMEN

Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate gene expression levels twofold or to completely inhibit transcription.

19.
Mol Cell Biol ; 32(9): 1710-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22393255

RESUMEN

Dosage compensation equalizes X-linked gene expression between the sexes. This process is achieved in Caenorhabditis elegans by hermaphrodite-specific, dosage compensation complex (DCC)-mediated, 2-fold X chromosome downregulation. How the DCC downregulates gene expression is not known. By analyzing the distribution of histone modifications in nuclei using quantitative fluorescence microscopy, we found that H4K16 acetylation (H4K16ac) is underrepresented and H4K20 monomethylation (H4K20me1) is enriched on hermaphrodite X chromosomes in a DCC-dependent manner. Depletion of H4K16ac also requires the conserved histone deacetylase SIR-2.1, while enrichment of H4K20me1 requires the activities of the histone methyltransferases SET-1 and SET-4. Our data suggest that the mechanism of dosage compensation in C. elegans involves redistribution of chromatin-modifying activities, leading to a depletion of H4K16ac and an enrichment of H4K20me1 on the X chromosomes. These results support conserved roles for histone H4 chromatin modification in worm dosage compensation analogous to those seen in flies, using similar elements and opposing strategies to achieve differential 2-fold changes in X-linked gene expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Cromosoma X , Animales , Caenorhabditis elegans/genética , Mutación
20.
Environ Mol Mutagen ; 52(9): 699-710, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22167885

RESUMEN

N-methyl-N-nitrosourea (MNU) was evaluated in the in vivo Pig-a mutation assay as part of an International Collaborative Trial to investigate laboratory reproducibility, 28-day study integration, and comparative analysis with micronucleus (MN), comet, and clinical pathology endpoints. Male Sprague Dawley rats were treated for 28 days with doses of 0, 2.5, 5, and 10 mg MNU/kg/day in two independent laboratories, GlaxoSmithKline (GSK) and Bristol Myers Squibb (BMS). Additional studies investigated the low-dose region (<2.5 mg/kg/day). Reticulocytes were evaluated for Pig-a phenotypic mutation, CD59-negative reticulocytes/erythrocytes (RETs(CD592-)/ RBCs(CD592-)) on Days 1, 4, 15, 29, 43, and 57, and for micronucleated reticulocytes (MN-RETs) on Days 4 and 29. Comet analysis was conducted for liver and whole blood, and hematology and clinical chemistry was investigated. Dose-dependent increases in the frequency of RETs(CD592-) and RBCs(CD592-) were observed by Day 15 or 29, respectively. Dose-dependent increases were observed in %MN-RET on Days 4 and 29, and in mean %tail intensity in liver and in blood. Hematology/clinical chemistry data demonstrated bone marrow toxicity. Data comparison between GSK and BMS indicated a high degree of concordance with the Pig-a mutation assay results, consistent with previous observations with MNU and N-ethyl-N-nitrosourea. These data confirm that complementary genotoxicity endpoints can be effectively incorporated into routine toxicology studies, a strategy that can provide information on gene mutation, chromosome damage, and DNA strand breaks in a single repeat dose rodent study. Collectively, this would reduce animal usage while providing valuable genetic toxicity information within the context of other toxicological endpoints.


Asunto(s)
Laboratorios , Proteínas de la Membrana/genética , Metilnitrosourea/toxicidad , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Mutación , Animales , Antígenos CD59/genética , Calibración , Ensayo Cometa/métodos , Ensayo Cometa/normas , Interpretación Estadística de Datos , Determinación de Punto Final , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/ultraestructura , Cooperación Internacional , Laboratorios/normas , Hígado/efectos de los fármacos , Hígado/ultraestructura , Masculino , Pruebas de Micronúcleos/métodos , Pruebas de Micronúcleos/normas , Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Ratas , Ratas Sprague-Dawley , Estándares de Referencia , Reproducibilidad de los Resultados , Reticulocitos/efectos de los fármacos , Reticulocitos/metabolismo , Reticulocitos/ultraestructura , Medición de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...