Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1172048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229191

RESUMEN

Introduction: The unpredictable evolution of avian influenza viruses (AIVs) presents an ongoing threat to agricultural production and public and wildlife health. Severe outbreaks of highly pathogenic H5N1 viruses in US poultry and wild birds since 2022 highlight the urgent need to understand the changing ecology of AIV. Surveillance of gulls in marine coastal environments has intensified in recent years to learn how their long-range pelagic movements potentially facilitate inter-hemispheric AIV movements. In contrast, little is known about inland gulls and their role in AIV spillover, maintenance, and long-range dissemination. Methods: To address this gap, we conducted active AIV surveillance in ring-billed gulls (Larus delawarensis) and Franklin's gulls (Leucophaeus pipixcan) in Minnesota's natural freshwater lakes during the summer breeding season and in landfills during fall migration (1,686 samples). Results: Whole-genome AIV sequences obtained from 40 individuals revealed three-lineage reassortants with a mix of genome segments from the avian Americas lineage, avian Eurasian lineage, and a global "Gull" lineage that diverged more than 50 years ago from the rest of the AIV global gene pool. No poultry viruses contained gull-adapted H13, NP, or NS genes, pointing to limited spillover. Geolocators traced gull migration routes across multiple North American flyways, explaining how inland gulls imported diverse AIV lineages from distant locations. Migration patterns were highly varied and deviated far from assumed "textbook" routes. Discussion: Viruses circulating in Minnesota gulls during the summer breeding season in freshwater environments reappeared in autumn landfills, evidence of AIV persistence in gulls between seasons and transmission between habitats. Going forward, wider adoption of technological advances in animal tracking devices and genetic sequencing is needed to expand AIV surveillance in understudied hosts and habitats.

2.
Integr Environ Assess Manag ; 17(2): 398-410, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32930480

RESUMEN

Some populations of common terns (Sterna hirundo) breeding at inland lakes in North America are declining, including the Laurentian Great Lakes. Terns nesting at inland colonies forage in freshwater during the breeding season and primarily in coastal marine environments during the nonbreeding season. As piscivores, they are susceptible to dietary Hg exposure. To characterize patterns of Hg exposure in this population, we 1) quantified within and among season differences in total mercury (THg) concentrations (µg/g) in blood and feathers at 2 Lake Superior breeding colonies, and 2) documented spatial and temporal variation in exposure by studying adult foraging ecology using geospatial tracking devices and stable isotopes. We used general linear models to assess the relationship between isotopic composition and THg concentrations in bird tissues relative to sex, age, colony location, and season. The THg concentrations were lowest in winter-grown feathers (geometric mean [95% confidence limits]): 1.32 (1.09-1.59) µg/g dw (n = 60), higher at the more industrially influenced colony (chick feathers: 4.95 [4.62-5.37] µg/g dw [n = 20]), and increased with a riverine-based diet. During the breeding season, Hg exposure varied along a gradient from lake to river, with adult females having lower blood THg concentrations than males (females: 0.83 [0.67-1.03]) µg/g ww (n = 7); males: 1.15 (0.92-1.45) µg/g ww (n = 5). Stable isotope values suggested adults obtained 42 ± 12% (n = 12) of their diet from the river during incubation, which was validated with tracking data. During chick-rearing, chicks obtained 68 ± 19% (n = 44) of their diet from the river. Our results indicate colony location, foraging behavior, and season influenced Hg exposure for these Lake Superior colonies and underscores the importance of local contamination with respect to exposure. Integr Environ Assess Manag 2021;17:398-410. © 2020 SETAC.


Asunto(s)
Charadriiformes , Mercurio , Animales , Monitoreo del Ambiente , Plumas/química , Femenino , Masculino , Mercurio/análisis , América del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA