Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 101(7): 1292-1299, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30682944

RESUMEN

Genetic control of resistance to Fusarium head blight (FHB) is quantitative, making phenotypic selection difficult. Genetic markers to resistance are helpful to select favorable genotypes. This study was conducted to determine if Fhb1 and Fhb5 present in the Sumai 3 source of FHB resistance occur in Sumai 3-derived North American spring wheat cultivars and to understand the appropriateness of using markers to select for the favorable alleles at these loci in breeding. Sumai 3-derived parents Alsen, ND3085, ND744, Carberry, and Glenn were used in crosses to generate 14 doubled haploid breeding populations. The parents and progeny were genotyped with five Fhb1 and three Fhb5 microsatellite markers. Progeny were selected based on performance relative to parents and other control cultivars in FHB nurseries near Portage la Prairie and Carman, MB. χ2 and t test analyses were performed on marker and FHB data. The χ2 test frequently determined the proportion of lines carrying molecular variants associated with FHB resistance increased following nursery selection for FHB. Similarly, the t test regularly demonstrated that selection for FHB resistance lowered the mean level of disease associated with resistant marker haplotypes. The study affirmed FHB resistance sources Alsen, Carberry, ND3085, and ND744 have Fhb1 and Fhb5 loci like Sumai 3, but no evidence was found that Glenn carries Fhb1 and Fhb5 resistance alleles. The results justified use of Fhb1 and Fhb5 markers for marker assisted selection in populations derived from Alsen, Carberry, ND3085, and ND744, but not Glenn. Combined or individual application of Xgwm493 and Xgwm533 in selection of genotypes carrying Fhb1, and Xgwm150, Xgwm304, and Xgwm595 for Fhb5 will enhance FHB resistance in wheat.

2.
Theor Appl Genet ; 129(2): 243-56, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26520114

RESUMEN

KEY MESSAGE: Breeding for field resistance to common bunt in wheat will need to account for multiple genes and epistatic and QTL by environment interactions. Loci associated with quantitative resistance to common bunt are co-localized with other beneficial traits including plant height and rust resistance. ABSTRACT: Common bunt, also known as stinking smut, is caused by seed borne fungi Tilletia tritici (Bjerk.) Wint. [syn. Tilletia caries (DC.) Tul.] and Tilletia laevis Kühn [syn. Tilletia foetida (Wallr.) Liro.]. Common bunt is known to cause grain yield and quality losses in wheat due to bunt ball formation and infestation of the grain. The objectives of this research were to identify and map quantitative trait loci (QTL) for common bunt resistance, to study the epistatic interactions between the identified QTL, and investigate the co-localization of bunt resistance with plant height. A population of 261 doubled haploid lines from the cross Carberry/AC Cadillac and checks were genotyped with polymorphic genome wide microsatellite and DArT(®) markers. The lines were grown in 2011, 2012, and 2013 in separate nurseries for common bunt incidence and height evaluation. AC Cadillac contributed a QTL (QCbt.spa-6D) for common bunt resistance on chromosome 6D at markers XwPt-1695, XwPt-672044, and XwPt-5114. Carberry contributed QTL for bunt resistance on chromosomes 1B (QCbt.spa-1B at XwPt743523) 4B (QCbt.spa-4B at XwPt-744434-Xwmc617), 4D (QCbt.spa-4D at XwPt-9747), 5B (QCbt.spa-5B at XtPt-3719) and 7D (QCbt.spa-7D at Xwmc273). Significant epistatic interactions were identified for percent bunt incidence between QCbt.spa-1B × QCbt.spa-4B and QCbt.spa-1B × QCbt.spa-6D, and QTL by environment interaction between QCbt.spa-1B × QCbt.spa-6D. Plant height QTL were found on chromosomes 4B (QPh.spa-4B) and 6D (QPh.spa-6D) that co-located with bunt resistance QTL. The identification of previously unreported common bunt resistance QTL (on chromosomes 4B, 4D and 7D), and new understanding of QTL × QTL interactions will facilitate marker-assisted breeding for common bunt resistance.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Basidiomycota , Cruzamiento , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Epistasis Genética , Marcadores Genéticos , Genotipo , Haploidia , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Triticum/microbiología
3.
Theor Appl Genet ; 127(11): 2465-77, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25239218

RESUMEN

KEY MESSAGE: In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies. Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT(®) and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad/genética , Epistasis Genética , Sitios de Carácter Cuantitativo , Triticum/genética , Cruzamiento , Canadá , Mapeo Cromosómico , Cromosomas de las Plantas , Ligamiento Genético , Genética de Población , Genotipo , Kenia , Nueva Zelanda , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología
4.
Mol Breed ; 33: 919-929, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24659906

RESUMEN

Severe losses attributable to pre-harvest sprouting (PHS) have been reported in Canada in recent years. The genetics of PHS resistance have been more extensively studied in hexaploid wheat and generally not using combinations of elite agronomic parents. The objective of our research was to understand the genetic nature of PHS resistance in an elite durum cross. A doubled haploid (DH) population and checks were phenotyped in replicated trials for grain yield and PHS traits over 3 years in western Canada. The response of intact spikes to sprouting conditions, sampled over two development time points, was measured in a rain simulation chamber. The DH population was genotyped with simple sequence repeat and Diversity Arrays Technology markers. Genotypes were a significant source of variation for grain yield and PHS resistance traits in each tested environment. Transgressive segregant DH genotypes were identified for grain yield and PHS resistance measurements. Low or no correlation was detected between grain yield and PHS, while correlation between PHS resistance measurements was moderate. The heritability of PHS resistance was moderate and higher than grain yield. Significant quantitative trait loci with small effect were detected on chromosomes 1A, 1B, 5B, 7A and 7B. Both parents contributed to the PHS resistance. Promising DH genotypes with high and stable grain yield as well as PHS resistance were identified, suggesting that grain yield and PHS can be improved simultaneously in elite genetic materials, and that these DH genotypes will be useful parental material for durum breeding programs.

5.
Theor Appl Genet ; 126(8): 1951-64, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23649649

RESUMEN

Stem rust (Puccinia graminis f. sp. tritici) is responsible for major production losses in hexaploid wheat (Triticum aestivum L.) around the world. The spread of stem rust race Ug99 and variants is a threat to worldwide wheat production and efforts are ongoing to identify and incorporate resistance. The objectives of this research were to identify quantitative trait loci (QTL) and to study their epistatic interactions for stem rust resistance in a population derived from the Canadian wheat cultivars AC Cadillac and Carberry. A doubled haploid (DH) population was developed and genotyped with DArT(®) and SSR markers. The parents and DH lines were phenotyped for stem rust severity and infection response to Ug99 and variant races in 2009, 2010 and 2011 in field rust nurseries near Njoro, Kenya, and to North American races in 2011 and 2012 near Swift Current, SK, Canada. Seedling infection type to race TTKSK was assessed in a bio-containment facility in 2009 and 2012 near Morden, MB. Eight QTL for stem rust resistance and three QTL for pseudo-black chaff on nine wheat chromosomes were identified. The phenotypic variance (PV) explained by the stem rust resistance QTL ranged from 2.4 to 48.8 %. AC Cadillac contributed stem rust resistance QTL on chromosomes 2B, 3B, 5B, 6D, 7B and 7D. Carberry contributed resistance QTL on 4B and 5A. Epistatic interactions were observed between loci on 4B and 5B, 4B and 7B, 6D and 3B, 6D and 5B, and 6D and 7B. The stem rust resistance locus on 6D interacted synergistically with 5B to improve the disease resistance through both crossover and non-crossover interactions depending on the environment. Results from this study will assist in planning breeding for stem rust resistance by maximizing QTL main effects and epistatic interactions.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Basidiomycota , Mapeo Cromosómico , Cromosomas de las Plantas , Grano Comestible/genética , Epistasis Genética , Genotipo , Enfermedades de las Plantas/microbiología , Tallos de la Planta , Triticum/inmunología , Triticum/microbiología
6.
Mol Breed ; 31(2): 405-418, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23396999

RESUMEN

Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA