Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 65(6): 065007, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059205

RESUMEN

For external irradiation, the variability in organ dose estimation found between computational phantom generations arises particularly from the differences in organ positioning. This work represents the first effort to quantify the differences in organ depth below the body surface between a stylized and voxel phantom series. Herein, the revised Oak Ridge National Laboratory stylized phantom series and the University of Florida/National Cancer Institute voxel phantom series were compared. Both series include whole-body models of the newborn; the 1-, 5-, 10-, and 15-year-old; and the adult human. Organ depths from eight different directions applicable to external irradiation geometries were computed: antero-posterior, postero-anterior, left and right lateral, rotational, isotropic, cranial and caudal directions. Organ depths in the stylized phantoms were computed using a ray-tracing technique available through Monte Carlo radiation transport simulations in MCNP6. Organ depths in the voxel phantom were found using phantom matrix manipulation. Resultant organ depths for both series were plotted as distributions; available are twenty-four organs and two bone tissue distributions for each of six phantom ages and in each of the eight directional geometries. Quantitative data descriptors (e.g. mean and median depths) were also tabulated. For demonstration purposes, a literature review of relevant stylized versus voxel comparison works was performed to explore where the quantification of organ depth differences can provide further insight or evidence to study conclusions. The entire dataset of organ depth distributions and their data descriptors can be found in online supplementary files.


Asunto(s)
Fantasmas de Imagen , Radiometría/instrumentación , Adolescente , Adulto , Niño , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Método de Montecarlo , Dosis de Radiación
2.
Biomed Phys Eng Express ; 6(5): 055010, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33444241

RESUMEN

Nuclear medicine is the second largest source of medical radiation exposure to the general population after computed tomography imaging. Informed decisions regarding the use of nuclear medicine procedures require a better understanding of the magnitude of radiation dose and associated health risks. However, existing model-based organ dose estimation tools rely on simplified human anatomy models or commercial programs. Therefore, we developed a publicly-available dose calculation tool based on more sophisticated human anatomy models. We calculated a comprehensive library of photon and electron specific absorbed fractions (SAF) for multiple combinations of source and target regions within a series of pediatric and adult computational human phantoms matching the International Commission on Radiological Protection (ICRP)'s reference data, combined with a Monte Carlo radiation transport code. Then, we derived a library of S values from these SAFs and the nuclear decay data from ICRP Publication 107. Finally, we created a graphical user interface, named National Cancer Institute Dosimetry System for Nuclear Medicine (NCINM), to facilitate the dosimetry process. Approximately 13 million S values were derived from 2 million SAFs computed in this work. Comprehensive comparisons were conducted at different steps of the dosimetry chain with data available in software OLINDA/EXM 1.0 and IDAC 2.1. For instance, median ratios of photon self-absorption SAFs available from OLINDA/EXM 1.0 and IDAC 2.1 to those calculated in this study were 1.3 (interquartile range = 1.1-1.6) and 1.0 (interquartile range = 0.98-1.0), respectively. SAF differences between NCINM and OLINDA/EXM 1.0 were explained by the large inter-phantom anatomical variability. Our results illustrate the importance of realistic human anatomy models for use in dosimetry software. More phantoms and radionuclides, as well as a biokinetic module, will soon be added. Applications of the NCINM program include computation of absorbed doses for use in radiation epidemiologic studies and patient dose monitoring in nuclear medicine.


Asunto(s)
Electrones , Imagen Multimodal/métodos , Medicina Nuclear , Órganos en Riesgo/efectos de la radiación , Fantasmas de Imagen , Fotones , Programas Informáticos , Adolescente , Adulto , Niño , Preescolar , Simulación por Computador , Humanos , Lactante , Recién Nacido , Método de Montecarlo , Órganos en Riesgo/diagnóstico por imagen , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...