Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 128: 161-170, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36801032

RESUMEN

Cyanobacteria can produce cyanotoxins such as microcystin-LR (MC), saxitoxin (STX), and anatoxin-a (ANTX-a) which are harmful to humans and other animals. Individual removal efficiencies of STX and ANTX-a by powdered activated carbon (PAC) was investigated, as well as when MC-LR and cyanobacteria were present. Experiments were conducted with distilled water and then source water, using the PAC dosages, rapid mix/flocculation mixing intensities and contact times of two drinking water treatment plants in northeast Ohio. At pH 8 and 9, STX removal was 47%-81% in distilled water and 46%-79% in source water, whereas it was 0-28% for pH 6 in distilled water and 31%-52% in source water. When 1.6 µg/L or 20 µg/L MC-LR was present with STX, STX removal was increased with PAC simultaneously removing 45%-65% of the 1.6 µg/L MC-LR and 25%-95% of the 20 µg/L MC-LR depending on the pH. ANTX-a removal at pH 6 was 29%-37% for distilled water and 80% for source water, whereas it was 10%-26% for pH 8 in distilled water and 28% for pH 9 in source water. The presence of cyanobacteria cells decreased ANTX-a removal by at least 18%. When 20 µg/L MC-LR was present with ANTX-a in source water, 59%-73% ANTX-a and 48%-77% of MC-LR was removed at pH 9 depending on the PAC dose. In general, a higher PAC dose led to higher cyanotoxin removals. This study also documented that multiple cyanotoxins can be effectively removed by PAC for water at pH's between 6 and 9.


Asunto(s)
Cianobacterias , Saxitoxina , Humanos , Carbón Orgánico , Toxinas de Cianobacterias , Microcistinas
2.
Chemosphere ; 311(Pt 2): 137132, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343731

RESUMEN

Tire and road wear particles (TRWP) are becoming an important research question with potential risks on ecological system. A comprehensive understanding of their detection and quantification in soils are challenged by the inherent technological inconsistencies, lack of well-set standardized methods, and generalized protocols. Reference tire cryogrinds were subjected to abiotic weathering. Next, the total environmental availability from parent elastomers and the release of additives from tire tread compounds were evaluated using mass concentration factors obtained from abiotic weathered tire cryogrinds. Headspace Gas chromatography-mass spectroscopy (HS-GC-MS) was employed as a nontargeted, suspect screening analysis technique to identify the tire related intermediates. Benzothiazole, 1,2-dihydro-2,2,4-trimethylquinoline (TMQ), aniline, phenol and benzoic acid were detected as tire tetrahydrofuran leachates. Total environmental availability of TMQ and benzothiazole were in the range of 1.7 × 10-3 and 0.11, respectively. Benzene and benzoic acid derivatives were identified as marker compounds for environmental samples. A TRWP content evaluation was made possible by quantifying marker concentrations and reference tire cryogrind formulation. TRWP content in the size range of 1-5 mm was between 800 and 1300 µg/g and 1200-3100 µg/g TRWP in Ohio and Kansas soil. For TRWP less than 1 mm, 0.15-2.1 wt% content was observed in Kansas and Ohio samples and were seemingly dependent on the locations and the traffic. This simple, widely applicable quantification method for TRWP analysis provides a database of tire degradation and TRWP intermediates. The TRWP content research is critical for further TRWP research development in terrestrial environment.

3.
Environ Sci Technol ; 56(17): 11910-11921, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35980850

RESUMEN

A comprehensive understanding of tire and road wear particles (TRWPs) and their detection and quantification in soils is still challenged by the lack of well-set standardized methods, inherent technological inconsistencies, and generalized protocols. Our protocol includes soil sampling, size separation, and organic matter removal by using hydrogen peroxide followed by density separation and analysis. In this context, roadside soil samples from different sites in Kansas and Ohio, USA, were collected and analyzed. Tire cryogrinds analogous to TRWPs were used to evaluate various density separation media, and collected particles more than 1 mm in size were then subjected to infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) to confirm TRWP presence. Particles smaller than 1 mm were Soxhlet extracted, followed by gas chromatography-mass spectrometry (GC-MS) to validate the presence of tire-related intermediates. SEM-EDX validated the presence of elemental combinations (S + Zn/Na) ± (Al, Ca, Mg, K, Si) attributed to tires. Ketones, carboxylic acids, epoxies, cyclohexane, and benzothiazole sulfenamide (BTS) intermediates were the most probable tire-related intermediates observed in the roadside soil samples. Thus, this simple, widely applicable, cost-effective sample preparation protocol for TRWP analysis can assist TRWP research advancement in terrestrial environments.


Asunto(s)
Monitoreo del Ambiente , Suelo , Cromatografía de Gases y Espectrometría de Masas , Kansas , Ohio
4.
Heliyon ; 6(8): e04681, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32923711

RESUMEN

Numerous drinking water plants and agricultural wastewaters generate water treatment residuals (WTR) during coagulation processes. These WTRs may be effective at reducing nutrients entering waterways, thereby decreasing the potential formation of algal blooms. Of the WTRs used in this study, Al-based WTR (Al-WTR) was the most effective achieving a 20 °C cumulative adsorbed concentrations (qe) after 28 days of desorption of 63-76 mg PO4/kg Al-WTR depending on the initial spiked concentration. When the isotherm temperature was 5 °C, Al-WTR effectiveness decreased. Ferric chloride WTR (Fe-WTR) was only effective when 0.6 mg/L of PO4 was spiked to surface water with 0.01 mg/PO4 stored at 20 °C yielding a 28 day cumulative qe 5.67 mg PO4/kg Fe-WTR. At 5 °C, the cumulative qe after extended desorption was 1-4.63 mg/kg Fe-WTR. Ferrous sulfate based WTR (Fe2-WTR) was not capable of adsorbing any additional PO4 regardless of the spiked concentration or temperature.

5.
Chemosphere ; 249: 126117, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32088465

RESUMEN

Coal mine derived acid mine drainage (AMD) is formed when oxygenated water infiltrates mine voids and oxidizes FeS phases, generating acidic fluid rich in heavy metals, polluting thousands of miles of streams. Existing remediation options are cost-prohibitive and difficult to sustain. In some cases, AMD flows over previously pristine soil in thin sheets over terrestrial surface, enhancing AMD aeration and Fe(II) oxidizing activities, leading to oxidative Fe(II) precipitation from AMD, without any human intervention. Since robust Fe(II) biooxidation occurs in the mixture of intruding AMD and pristine soil, understanding the effects of chemically variant AMD can be exploited for effective Fe(II) removal. We hypothesized that chemistry and microbiology of AMD intruding pristine soil on surface would influence the development of Fe(II) oxidizing capabilities. Therefore, to investigate the response of pristine soil to the addition of AMD varying in chemical and microbial characteristics, we mixed soil with a near-neutral and moderately acidic AMD, in separate incubations. Incubations with near-neutral AMD developed microbial Fe(II) oxidation activities after 10 days. However, Fe(II) oxidation in moderately acidic AMD incubations was mostly abiotic. 16S rRNA gene sequences and metabolic functional prediction (Tax4Fun) analysis of near-neutral AMD and soil mixture indicated development of taxonomically different communities capable of activities similar to microorganisms in a mine void. In conclusion, results indicate that AMD chemistry and microbiology affects development of Fe(II) biooxidation. Therefore, understanding of the effect of AMD chemistry on the development of FeOB activities in soil can be exploited to design site-specific and sustainable solutions.


Asunto(s)
Biodegradación Ambiental , Hierro/metabolismo , Minería , Microbiología del Suelo , Contaminantes Químicos del Agua/metabolismo , Ácidos/metabolismo , Bacterias/metabolismo , Contaminantes Ambientales/metabolismo , Contaminación Ambiental , Hierro/química , Oxidación-Reducción , ARN Ribosómico 16S/genética , Suelo/química
6.
Int J Phytoremediation ; 19(3): 254-261, 2017 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-27484518

RESUMEN

Phragmites australis has been used to treat acid mine drainage (AMD)-contaminated soil. However, the mechanism about metal translocation in reeds was not widely reported. This study investigated metal (Fe, Al, and Mn) storage location in reeds grown in five different sampling sites of an AMD field. As expected, the more metals in soil, the more metals entered the belowground organs of plants. Reeds grown in soils with the highest levels of metals accumulated 0.16 ± 0.04 mg/g Mn, 16.29 ± 4.15 mg/g Fe, and 1.31 ± 0.22 mg/g Al in roots. Most of the iron was sequestered in the roots, while Al was transferred to the shoots. Histological staining found that most of the iron was sequestered in the exodermis, while Al extended the endodermis of roots. Al even entered the stele of roots grown in soil with higher Al levels. The epidermis, cortex, and central cylinder of rhizomes were the main tissues for Fe and Al storage. The more metals in rhizomes, the stronger intensity of the staining was observed around the vascular systems of rhizomes. No structural difference was observed among reeds collected from different sites. Further studies may be needed to enhance the transfer of metals in reeds and increase the phytoremediation efficiency.


Asunto(s)
Poaceae/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Aluminio/metabolismo , Biodegradación Ambiental , Hierro/metabolismo , Manganeso/metabolismo , Minería , Ohio
7.
Environ Technol ; 37(14): 1821-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26789500

RESUMEN

Wetland plants such as Phragmites australis has been used to treat acid mine drainage (AMD) contaminated soil which is a serious environmental issue worldwide. This project investigated metal plaque content(s) and metal uptake in reeds grown in an AMD field in winter and spring. The results indicated that the level of Fe plaque was much higher than Mn and Al plaque as the soil contained more Fe than Al and Mn. The amounts of Mn and Al plaque formed on reeds in spring were not significantly different from that in winter (p > .05). However, more Fe plaque was formed on reeds collected in spring. The concentrations of metals in underground organs were positively related to the metal levels in soils. More Mn and Al transferred to the aboveground tissues of reeds during the spring while the Fe levels in reeds did not significantly vary with seasons. Roots and rhizomes were the main organs for Fe sequestration (16.3 ± 4.15 mg/g in roots in spring) while most Al was sequestered in the shoots of reeds (2.05 ± 0.09 mg/g in shoots in spring). Further research may be needed to enhance the translocation of metals in reeds and increase the phytoremediation efficiency.


Asunto(s)
Metales/análisis , Raíces de Plantas/química , Poaceae/química , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Biodegradación Ambiental , Monitoreo del Ambiente , Minería , Rizosfera
8.
J Environ Qual ; 44(3): 859-67, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26024266

RESUMEN

Studies were conducted to investigate the interactions among rhizosphere microorganisms, plaque formation, and metal accumulation in reeds [ (Cav.) Trin. ex Steud.] grown in an acid mine drainage-contaminated field. We found that Fe(II)-oxidizing bacteria (Fe(II)OB] played a key role in Fe plaque formation and pH decrease. The kinetics of Fe plaque formation were related to the abundance of rhizosphere Fe(II)OB, which mediated 66.0 to 93.3% Fe(II) oxidation. The Fe(II) concentration decreased from 14.24 to 0.94 mg L in nonsterile samples, with the most abundant Fe(II)OB activity (5.64 ± 3.83 × 10 colony-forming units g) after 2 d, and pH decreased from 2.91 to 2.50. The amount of metal plaque was also positively correlated with metal levels in soil. No significant correlations were found between Fe, Mn, and Al concentration in the plaque. Reeds sequestered Al in the aboveground tissues, and Mn and Al were stored in the roots and rhizomes. Metal plaque did not affect the Mn uptake but inhibited the translocation of Fe and Al in reeds. To increase the phytoremediation efficiency of Fe, Mn, and Al from the acid mine drainage-contaminated site, further research may be needed to inhibit the Fe(II)OB growth and reduce the metal plaque formation, thereby increasing the metal accumulation in reeds.

9.
Int J Mol Sci ; 16(3): 4392-415, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25706513

RESUMEN

There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the "miracle solution" has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred.


Asunto(s)
Antiinfecciosos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Butadienos/farmacología , Hemiterpenos/farmacología , Pentanos/farmacología , Polímeros/farmacología , Antiinfecciosos/química , Adhesión Bacteriana/fisiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Butadienos/química , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Hemiterpenos/química , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Estructura Molecular , Pentanos/química , Polímeros/química , Agua de Mar/microbiología , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
10.
Environ Monit Assess ; 187(2): 24, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25626570

RESUMEN

1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane(4,4'-DDT) is a pesticide well-known for its negative health and environmental effects. Despite being banned by a majority of world countries more than 30 years ago, its persistence in the environment is a continuing problem even today. The objective of the study was the investigation of sorption/desorption behavior of 4,4'-DDT in sandy loam soil. The impact of contaminant concentration and age was observed with three different experiments. The sorption percentages at the end of the short time step (8 h) were 50 and 92 %, for initial concentrations 2.26 and 5.28 mg/L, respectively. When freshly spiked soil was subjected to a conventional sorption study, 82 to 99.6 % of the initial aqueous DDT concentrations were sorbed within 24 h. When modeled with a Freundlich isotherm, the log K f was found to be 3.62. After six consecutive 24 h desorption steps, 33 to 96.6 % still remained in the soil. This was more pronounced for soils that had been aged for 60 days. After seven consecutive 24 h desorption steps of aged soil, the percent remaining sorbed to the soil were 44, 64, and 77 %, for 25, 250, and 500 mg/kg, respectively. All results show that 4,4-DDT has a tendency of sorbing to the soil rapidly and showing resistance to desorption. When comparing desorption values, aged soils were seen to desorb less than non-aged soils. This result was attributed to stronger binding to soil with increased contact time.


Asunto(s)
DDT/química , Monitoreo del Ambiente , Plaguicidas/química , Contaminantes del Suelo/química , Suelo/química , DDT/análisis , Plaguicidas/análisis , Contaminantes del Suelo/análisis
11.
J Environ Manage ; 150: 235-242, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25514538

RESUMEN

The effect of citric acid (CA), rhizosphere acidophilic heterotrophs and/or Fe(II) oxidizing bacteria (Fe(II)OB) on plaque formation and metal accumulation in Phragmites australis L. (common reed) from acid mine drainage (AMD) solution were investigated. Reeds were grown in different hydroponic solutions that contained AMD, CA and/or rhizosphere bacteria for three months. Triplicate experiments were conducted for each experimental condition. Fe(II)OB enhanced the formation of Fe plaque which decreased Fe and Mn uptake in reeds, while it had no significant influence on Al accumulation. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque and increased Fe and Mn accumulation in reeds. Acidophilic heterotrophs consumed CA and made the environment more suitable for the growth of Fe(II)OB. Reeds are a good candidate for phytoextraction while CA is a useful chelator to enhance metal uptake in plants. More research may be needed to investigate the influence of CA on microbial community. Further investigations are required to study the effect of CA on phytoremediation of AMD contaminated fields.


Asunto(s)
Bacterias/metabolismo , Ácido Cítrico/farmacología , Metales Pesados/metabolismo , Minería , Poaceae/metabolismo , Fenómenos Fisiológicos Bacterianos , Biodegradación Ambiental , Humanos , Raíces de Plantas/microbiología , Poaceae/efectos de los fármacos , Rizosfera
12.
Int J Phytoremediation ; 17(1-6): 391-403, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25409253

RESUMEN

Acid mine drainage (AMD) adversely impacts many regions in the world. The interactions among citric acid (CA), rhizosphere bacteria and metal uptake in different types of Phragmites australis cultured in spiked AMD contaminated soil were investigated. Compared with non-contaminated reeds cultured under the same conditions, wild reeds harvested from a contaminated site accumulated more metals into tissues. Rhizosphere iron oxidizing bacteria (Fe(II)OB) enhanced the development of Fe plaque but had no significant impact on the formation of Mn and Al plaque on the root surface of either reeds. Plaque may restrain the accumulation of Fe and Mn into tissues of reeds. CA inhibited the growth of Fe(II)OB, reduced the formation of metal plaque and significantly elevated metal accumulations into both underground and aboveground biomass of reeds. The concentrations of Fe, Al and Mn were higher in belowground organs than aboveground tissues. The roots contained 0.28±0.01 mg/g Mn, 3.09±0.51 mg/g Al, 94.47±5.75 mg/g Fe, while the stems accumulated 0.19±0.01 mg/g Mn, 1.34±0.02 mg/g Al, 10.32±0.60 mg/g Fe in wild reeds cultured in soil added with 33,616 ppm CA. Further field investigations may be required to study the effect of CA to enhance phytoremediation of metals from real AMD contaminated sites.


Asunto(s)
Ácidos/metabolismo , Restauración y Remediación Ambiental/métodos , Poaceae/metabolismo , Contaminantes del Suelo/metabolismo , Aguas Residuales/análisis , Ácidos/análisis , Biodegradación Ambiental , Restauración y Remediación Ambiental/instrumentación , Minería , Poaceae/química , Contaminantes del Suelo/análisis
13.
Ecotoxicol Environ Saf ; 104: 72-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24632124

RESUMEN

Many of regions in the world have been affected by acid mine drainage (AMD). The study assessed the effect of rhizosphere bacteria and citric acid (CA) on the metal plaque formation and heavy metal uptake in Phragmites australis cultured in synthetic AMD solution. Mn and Al plaque were not formed, but Fe plaque which was mediated by rhizosphere iron oxidizing bacteria (Fe(II)OB) was observed on the root system of reeds. Fe plaque did not significantly influence the uptake of Fe, Al and Mn into tissues of reeds. CA significantly (p<0.01) inhibited the growth of Fe(II)OB and decreased the formation of Fe plaque. CA also significantly improved (p<0.05) the accumulation of Fe, Mn and Al in all the tissues of reeds. Roots and rhizomes were the main organs to store metals. The roots contained 0.08±0.01mg/g Mn, 2.39±0.26mg/g Fe and 0.19±0.02mg/g Al, while the shoots accumulated 0.04±0.00mg/g Mn, 0.20±0.01mg/g Fe, 0.11±0.00mg/g Al in reeds cultured in solution amended with 2.101g/l CA and without inoculation of rhizosphere bacteria.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ácido Cítrico/farmacología , Metales Pesados/metabolismo , Minería , Poaceae , Rizosfera , Bacterias , Biodegradación Ambiental , Metales Pesados/análisis , Raíces de Plantas/microbiología , Poaceae/química , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Poaceae/microbiología , Soluciones/farmacología , Contaminantes Químicos del Agua
14.
Environ Sci Pollut Res Int ; 21(12): 7350-60, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24573463

RESUMEN

Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8 ± 0.5 × 10(-6) mol plant(-1) (Mn), 1.4 ± 0.1 × 10(-3) mol plant(-1) (Fe), and 1.0 ± 0.1 × 10(-4) mol plant(-1) (Al) in spiked soil without CA to 22.2 ± 0.5 × 10(-6) mol plant(-1) (Mn), 3.5 ± 0.06 × 10(-3) mol plant(-1) (Fe), and 5.0 ± 0.2 × 10(-4) mol plant(-1) (Al) in soil added with 33.616 g C6H8O7·H2O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biodegradación Ambiental , Ácido Cítrico/farmacología , Metales/metabolismo , Minería , Raíces de Plantas/microbiología , Rizosfera , Contaminantes del Suelo/química , Metales/análisis , Poaceae/química , Poaceae/metabolismo , Poaceae/microbiología , Contaminantes del Suelo/metabolismo
15.
Environ Monit Assess ; 186(3): 1917-29, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24197560

RESUMEN

To assess the microbiological changes that occur during the maturation of overburden that has been disturbed by surface mining of coal, a surface mining-disturbed overburden unit in southeastern Ohio, USA was characterized. Overburden from the same unit that had been disturbed for 37 and 16 years were compared to undisturbed soil from the same region. Overburden and soil samples were collected as shallow subsurface cores from each subregion of the mined area (i.e., land 16 years and 37 years post-mining, and unmined land). Chemical and mineralogical characteristics of overburden samples were determined, as were microbial respiration rates. The composition of microbial communities associated with overburden and soil were determined using culture-independent, nucleic acid-based approaches. Chemical and mineralogical evaluation of overburden suggested that weathering of disturbed overburden gave rise to a setting with lower pH and more oxidized chemical constituents. Overburden-associated microbial biomass and respiration rates increased with time after overburden disturbance. Evaluation of 16S rRNA gene libraries that were produced by "next-generation" sequencing technology revealed that recently disturbed overburden contained an abundance of phylotypes attributable to sulfur-oxidizing Limnobacter spp., but with increasing time post-disturbance, overburden-associated microbial communities developed a structure similar to that of undisturbed soil, but retained characteristics of more recently disturbed overburden. Our results indicate that over time, the biogeochemical weathering of disturbed overburden leads to the development of geochemical conditions and microbial communities that approximate those of undisturbed soil, but that this transition is incomplete after 37 years of overburden maturation.


Asunto(s)
Monitoreo del Ambiente , Minería , Microbiología del Suelo , Carbón Mineral , Suelo/química , Contaminantes del Suelo/análisis
16.
Biochem Biophys Res Commun ; 438(4): 691-6, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23921230

RESUMEN

In the medical field, attached bacteria can cause infections associated with catheters, incisions, burns, and medical implants especially in immunocompromised patients. The problem is exacerbated by the fact that attached bacteria are ∼1000 times more resistant to antibiotics than planktonic cells. The rapid spread of antibiotic resistance in these and other organisms has led to a significant need to find new methods for preventing bacterial attachment. The goal of this research was to evaluate the effectiveness of novel polymer coatings to prevent the attachment of three medically relevant bacteria. Tests were conducted with Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus for oligomers derived from modifications of natural rubber (cis 1,4-polyisoprene). The different oligomers were: PP04, with no quaternary ammonium (QA); MV067, one QA; PP06, three QA groups. In almost all experiments, cell attachment was inhibited to various extents as long as the oligomers were used. PP06 was the most effective as it decreased the planktonic cell numbers by at least 50% for all bacteria. Differences between species sensitivity were also observed. P. aeruginosa was the most resistant bacteria tested, S. aureus, the most sensitive. Further experiments are required to understand the full extent and mode of the antimicrobial properties of these surfaces.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Goma/química , Goma/farmacología , Staphylococcus/efectos de los fármacos , Hemiterpenos/química , Hemiterpenos/farmacología , Humanos , Látex/química , Látex/farmacología , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/fisiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología
17.
Environ Monit Assess ; 185(2): 1087-93, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22552491

RESUMEN

The concentration and impact of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)-ethane (DDT) and its metabolites (DDE: 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene) on the environment was expected to decrease after its ban in the mid-1980s. Unfortunately, DDT contamination via its presence as an impurity in dicofol (2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol) has led to a new source of contamination. This is particularly true especially in cotton production in Söke Plain, Turkey, where difocol-based pesticides are being used. The aim of this research was to investigate the extent and source of DDT contamination in cotton soils. Söke Plain soil samples were collected from 0-30, 30-60, and 60-90-cm depth and analyzed by GC/MS/MS. o,p'-DDT and p, p'-DDE were detected at 16.2 % and 17.6 % of the sites in the 0-30-cm depth of soils. In the 30-60 cm, p, p'-DDT (14.9 %), o, p'-DDE (8.1 %) and p, p'-DDE (2.7 %) were found in soil samples, and p, p'-DDT was the most prevalent with 9.5 % of the sampling sites. The dominant source of DDT particularly in the 60-90-cm depth was due to historic use of DDT. The presence of p, p'-DDE, o, p'-DDE and p,p'-DDT in the topsoil was attributed to recent dicofol applications.


Asunto(s)
DDT/análisis , Monitoreo del Ambiente , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Agricultura , Contaminación Ambiental/estadística & datos numéricos , Suelo/química , Turquía
18.
Nat Prod Res ; 26(6): 580-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21861646

RESUMEN

The effectiveness of zosteric acid, a natural antifoulant from the marine seagrass Zostera marina, in preventing the attachment of quagga mussels, a biofouling bivalve, was investigated. Animals were exposed to water containing zosteric acid ranging from 0 to 1000 ppm, and their attachment to the container glass walls was tracked with time. 500 ppm zosteric acid was not effective at detaching animals that had already attached, but was able to prevent the attachment of most unattached animals for two days. The anti-fouling effect increased with higher concentration. Low concentrations (250 ppm and below) were not effective at preventing attachment; however, 1000 ppm zosteric acid prevented attachment of mussels for the first three days of zosteric acid exposure, and only 20% of the mussels were attached by day 4. In contrast, animals in control (no zosteric acid) solutions began to attach within one day. In conclusion, zosteric acid is an effective natural product deterrent of attachment of a biofouling bivalve.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Bivalvos/efectos de los fármacos , Cinamatos/farmacología , Ésteres del Ácido Sulfúrico/farmacología , Animales
19.
Environ Monit Assess ; 179(1-4): 201-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20953698

RESUMEN

Dilek National Park in Western Turkey is a protected habitat for several endangered and threatened species. In an attempt to protect the endangered species, the park was classified as a World Heritage Preserve. Even with this change, the animal and flora variety are still at risk from previous metal contamination. Water samples were collected 10 cm below the water surface and sediment from 0-30 and 30-60 cm depth. Inorganic elements were found in all sediment samples. Sodium had the highest aqueous concentration (10,312 mg/L), while Cu, Fe, Mn, and Zn were present at levels significantly lower than the chronic exposure criteria. Zn was the least prevalent (0.4 mg/kg) compound found in the sediment. The highest toxic contaminant concentration was Mg at an average of 1,100 mg/kg. The main contamination source of that seems to be Great Meandrous River. More studies are needed to develop a protection and remediation strategy for Dilek National Park.


Asunto(s)
Contaminantes Ambientales/análisis , Metales/análisis , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Contaminantes Ambientales/normas , Contaminación Ambiental/estadística & datos numéricos , Restauración y Remediación Ambiental , Sedimentos Geológicos/química , Metales/normas , Turquía
20.
Environ Monit Assess ; 173(1-4): 315-23, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20213057

RESUMEN

Turkey is one of the world's largest producers and exporters of table grapes. Growing social concerns over excessive pesticide use have led to farming to move from conventional to organic practices. Table grapes were collected from 99 different farms in three Aegean regions. Pesticide residues were only detected in farms using conventional agriculture practices while no pesticides were detected in grapes from farms using organic or integrated pest management. A risk assessment model indicated that lambda-cyhalothrin posed the most significant risk at conventional farms.


Asunto(s)
Agricultura , Agricultura Orgánica , Control de Plagas , Residuos de Plaguicidas/análisis , Vitis/química , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA