Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Front Cell Neurosci ; 18: 1358450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419655

RESUMEN

Schizophrenia is a complex and severe mental disorder that affects approximately 1% of the global population. It is characterized by a wide range of symptoms, including delusions, hallucinations, disorganized speech and behavior, and cognitive impairment. Recent research has suggested that the immune system dysregulation may play a significant role in the pathogenesis of schizophrenia, and glial cells, such as astroglia and microglia known to be involved in neuroinflammation and immune regulation, have emerged as potential players in this process. The aim of this systematic review is to summarize the glial hallmarks of schizophrenia, choosing as cellular candidate the astroglia and microglia, and focusing also on disease-associated psychological (cognitive and emotional) changes. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched PubMed, Scopus, and Web of Science for articles that investigated the differences in astroglia and microglia in patients with schizophrenia, published in the last 5 years. The present systematic review indicates that changes in the density, morphology, and functioning of astroglia and microglia may be involved in the development of schizophrenia. The glial alterations may contribute to the pathogenesis of schizophrenia by dysregulating neurotransmission and immune responses, worsening cognitive capabilities. The complex interplay of astroglial and microglial activation, genetic/epigenetic variations, and cognitive assessments underscores the intricate relationship between biological mechanisms, symptomatology, and cognitive functioning in schizophrenia.

2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834132

RESUMEN

Alzheimer's disease (AD) is a common cause of dementia characterized by neurodegenerative dysregulations, cognitive impairments, and neuropsychiatric symptoms. Physical exercise (PE) has emerged as a powerful tool for reducing chronic inflammation, improving overall health, and preventing cognitive decline. The connection between the immune system, gut microbiota (GM), and neuroinflammation highlights the role of the gut-brain axis in maintaining brain health and preventing neurodegenerative diseases. Neglected so far, PE has beneficial effects on microbial composition and diversity, thus providing the potential to alleviate neurological symptoms. There is bidirectional communication between the gut and muscle, with GM diversity modulation and short-chain fatty acid (SCFA) production affecting muscle metabolism and preservation, and muscle activity/exercise in turn inducing significant changes in GM composition, functionality, diversity, and SCFA production. This gut-muscle and muscle-gut interplay can then modulate cognition. For instance, irisin, an exercise-induced myokine, promotes neuroplasticity and cognitive function through BDNF signaling. Irisin and muscle-generated BDNF may mediate the positive effects of physical activity against some aspects of AD pathophysiology through the interaction of exercise with the gut microbial ecosystem, neural plasticity, anti-inflammatory signaling pathways, and neurogenesis. Understanding gut-muscle-brain interconnections hold promise for developing strategies to promote brain health, fight age-associated cognitive decline, and improve muscle health and longevity.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Fibronectinas , Factor Neurotrófico Derivado del Encéfalo , Ecosistema , Encéfalo , Ejercicio Físico , Músculos
3.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894793

RESUMEN

A substance capable of inducing a consistent pattern of neural dysfunction in the chemistry or structure of the nervous system may be defined as neurotoxic [...].


Asunto(s)
Síndromes de Neurotoxicidad , Humanos , Síndromes de Neurotoxicidad/etiología , Envejecimiento
5.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36982478

RESUMEN

Neuroinflammation is a pathophysiological condition associated with damage to the nervous system. Maternal immune activation and early immune activation have adverse effects on the development of the nervous system and cognitive functions. Neuroinflammation during adulthood leads to neurodegenerative diseases. Lipopolysaccharide (LPS) is used in preclinical research to mimic neurotoxic effects leading to systemic inflammation. Environmental enrichment (EE) has been reported to cause a wide range of beneficial changes in the brain. Based on the above, the purpose of the present review is to describe the effects of exposure to EE paradigms in counteracting LPS-induced neuroinflammation throughout the lifespan. Up to October 2022, a methodical search of studies in the literature, using the PubMed and Scopus databases, was performed, focusing on exposure to LPS, as an inflammatory mediator, and to EE paradigms in preclinical murine models. On the basis of the inclusion criteria, 22 articles were considered and analyzed in the present review. EE exerts sex- and age-dependent neuroprotective and therapeutic effects in animals exposed to the neurotoxic action of LPS. EE's beneficial effects are present throughout the various ages of life. A healthy lifestyle and stimulating environments are essential to counteract the damages induced by neurotoxic exposure to LPS.


Asunto(s)
Lipopolisacáridos , Enfermedades Neuroinflamatorias , Ratones , Animales , Lipopolisacáridos/toxicidad , Inflamación , Cognición , Encéfalo
6.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36982996

RESUMEN

Alzheimer's disease (AD) is a rapidly growing epidemic with a heavy social and economic burden. Evidence suggests that systemic inflammation, dysregulation of the immune response and the resulting neuroinflammation and neurodegeneration play a significant role in AD pathogenesis. Currently, given that there is no fully convincing cure for AD, the interest in lifestyle factors (such as diet), which potentially delay onset and reduce the severity of symptoms, is increasing. This review is aimed at summarizing the effects of dietary supplementation on cognitive decline, neuroinflammation and oxidative stress in AD-like animal models with a focus on neuroinflammation induced by lipopolysaccharide (LPS) injection, which mimics systemic inflammation in animals. The compounds reviewed include curcumin, krill oil, chicoric acid, plasmalogens, lycopene, tryptophan-related dipeptides, hesperetin and selenium peptides. Despite the heterogeneity of these compounds, there is a strong consensus on their counteracting action on LPS-induced cognitive deficits and neuroinflammatory responses in rodents by modulating cell-signaling processes, such as the NF-κB pathway. Overall, dietary interventions could represent an important resource to oppose AD due to their influence in neuroprotection and immune regulation.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Enfermedad de Alzheimer/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Inflamación , Disfunción Cognitiva/prevención & control , Dieta , Modelos Animales , Modelos Animales de Enfermedad
7.
Front Psychiatry ; 13: 1010169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532180

RESUMEN

The occurrence of neuropsychiatric symptoms in the elderly is viewed as an early sign of subsequent cognitive deterioration and conversion from mild cognitive impairment to Alzheimer's disease. The prognosis in terms of both the severity and progression of clinical dementia is generally aggravated by the comorbidity of neuropsychiatric symptoms and decline in cognitive function. Undeniably, aging and in particular unhealthy aging, is a silent "engine of neuropathology" over which multiple changes take place, including drastic alterations of the gut microbial ecosystem. This narrative review evaluates the role of gut microbiota changes as a possible unifying concept through which the comorbidity of neuropsychiatric symptoms and Alzheimer's disease can be considered. However, since the heterogeneity of neuropsychiatric symptoms, it is improbable to describe the same type of alterations in the bacteria population observed in patients with Alzheimer's disease, as well as it is improbable that the variety of drugs used to treat neuropsychiatric symptoms might produce changes in gut bacterial diversity similar to that observed in the pathophysiology of Alzheimer's disease. Depression seems to be another very intriguing exception, as it is one of the most frequent neuropsychiatric symptoms in dementia and a mood disorder frequently associated with brain aging. Antidepressants (i.e., serotonin reuptake inhibitors) or tryptophan dietary supplementation have been shown to reduce Amyloid ß-loading, reinstate microbial diversity and reduce the abundance of bacterial taxa dominant in depression and Alzheimer's disease. This review briefly examines this trajectory by discussing the dysfunction of gut microbiota composition, selected bacterial taxa, and alteration of tryptophan and serotonin metabolism/neurotransmission as overlapping in-common mechanisms involved with depression, Alzheimer's disease, and unhealthy aging.

8.
Neuroscientist ; : 10738584221120187, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052895

RESUMEN

Whereas emotion theorists often keep their distance from the embodied approach, theorists of embodiment tend to treat emotion as a mainly physiologic process. However, intimate links between emotions and the body suggest that emotions are privileged phenomena to attempt to reintegrate mind and body and that the body helps the mind in shaping emotional responses. To date, research has favored the cerebrum over other parts of the brain as a substrate of embodied emotions. However, given the widely demonstrated contribution of the cerebellum to emotional processing, research in affective neuroscience should consider embodiment theory as a useful approach for evaluating the cerebellar role in emotion and affect. The aim of this review is to insert the cerebellum among the structures needed to embody emotions, providing illustrative examples of cerebellar involvement in embodied emotions (as occurring in empathic abilities) and in impaired identification and expression of embodied emotions (as occurring in alexithymia).

9.
Behav Sci (Basel) ; 12(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36004863

RESUMEN

The analysis of sequences of words and prosody, meter, and rhythm provided in an interview addressing the capacity to identify and describe emotions represents a powerful tool to reveal emotional processing. The ability to express and identify emotions was analyzed by means of the Toronto Structured Interview for Alexithymia (TSIA), and TSIA transcripts were analyzed by Natural Language Processing to shed light on verbal features. The brain correlates of the capacity to translate emotional experience into words were determined through cortical thickness measures. A machine learning methodology proved that individuals with deficits in identifying and describing emotions (n = 7) produced language distortions, frequently used the present tense of auxiliary verbs, and few possessive determiners, as well as scarcely connected the speech, in comparison to individuals without deficits (n = 7). Interestingly, they showed high cortical thickness at left temporal pole and low at isthmus of the right cingulate cortex. Overall, we identified the neuro-linguistic pattern of the expression of emotional experience.

10.
Adv Exp Med Biol ; 1378: 255-269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35902476

RESUMEN

This chapter addresses how the embodiment approach may represent a unifying perspective for examining the cerebellar role in emotional behavior and psychological traits. It is not intended to be exhaustive, but rather it can be a good starting point for advancing the cerebellar neural mechanism underlying embodiment. Our goal is to provide illustrative examples of embodied emotions and psychological traits in the emerging field of emotional and cognitive cerebellum. We illustrate how the cerebellum could be an important hub in the embodiment processes, associated with empathic abilities, impaired emotional identification and expression (as occurring for example in the presence of alexithymia), and specific psychological constructs (i.e., hypnotizability).


Asunto(s)
Cerebelo , Emociones , Imagen por Resonancia Magnética
12.
Curr Neuropharmacol ; 20(11): 2202-2220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35748555

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.


Asunto(s)
Alcoholismo , Adolescente , Humanos , Consumo de Bebidas Alcohólicas , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Etanol
13.
Biomolecules ; 12(5)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35625595

RESUMEN

Palmitoylethanolamide (PEA) stands out among endogenous lipid mediators for its neuroprotective, anti-inflammatory, and analgesic functions. PEA belonging to the N-acetylanolamine class of phospholipids was first isolated from soy lecithin, egg yolk, and peanut flour. It is currently used for the treatment of different types of neuropathic pain, such as fibromyalgia, osteoarthritis, carpal tunnel syndrome, and many other conditions. The properties of PEA, especially of its micronized or ultra-micronized forms maximizing bioavailability and efficacy, have sparked a series of innovative research to evaluate its possible application as therapeutic agent for neurodegenerative diseases. Neurodegenerative diseases are widespread throughout the world, and although they are numerous and different, they share common patterns of conditions that result from progressive damage to the brain areas involved in mobility, muscle coordination and strength, mood, and cognition. The present review is aimed at illustrating in vitro and in vivo research, as well as human studies, using PEA treatment, alone or in combination with other compounds, in the presence of neurodegeneration. Namely, attention has been paid to the effects of PEA in counteracting neuroinflammatory conditions and in slowing down the progression of diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Literature research demonstrated the efficacy of PEA in addressing the damage typical of major neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Roedores , Amidas , Animales , Etanolaminas/farmacología , Etanolaminas/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ácidos Palmíticos/farmacología , Ácidos Palmíticos/uso terapéutico
14.
Nutrients ; 14(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35565948

RESUMEN

Women show an increased risk of cognitive impairment and emotional disorders, such as anxiety and depression, when approaching menopause. Data on risk and protection factors have yielded robust evidence on the effects of lifestyle factors, such as diet, in preserving emotional and cognitive functioning. This review focused on the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on anxiety, depression, and cognition during the menopausal transition. This systematic review considered all articles published until 31 December 2021, and the search was performed on two databases, PubMed and Scopus. The fields of interest were "menopause", "n-3 PUFA" and "emotional and cognitive aspects". Out of the 361 articles found on PubMed and 283 on Scopus, 17 met inclusion criteria. They encompassed 11 human and 6 animal studies. Most studies reported relieved depressive symptoms in relation to n-3 PUFA intake. While controversial results were found on anxiety and cognition in humans, n-3 PUFA consistently reduced anxiety symptoms and improved cognition in animal studies. Taken together, n-3 PUFA intake shows beneficial effects on emotional and cognitive behaviours during menopause transition. However, further investigations could increase knowledge about the effectiveness of n-3 PUFA on psychological well-being in this delicate period of feminine life.


Asunto(s)
Ácidos Grasos Omega-3 , Animales , Ansiedad , Trastornos de Ansiedad , Cognición , Ácidos Grasos Omega-3/farmacología , Femenino , Humanos , Menopausia
15.
J Alzheimers Dis ; 85(3): 975-992, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34897089

RESUMEN

Brain-derived neurotrophic factor (BDNF), a protein belonging to the neurotrophin family, is known to be heavily involved in synaptic plasticity processes that support brain development, post-lesion regeneration, and cognitive performances, such as learning and memory. Evidence indicates that BDNF expression can be epigenetically regulated by environmental stimuli and thus can mediate the experience-dependent brain plasticity. Environmental enrichment (EE), an experimental paradigm based on the exposure to complex stimulations, constitutes an efficient means to investigate the effects of high-level experience on behavior, cognitive processes, and neurobiological correlates, as the BDNF expression. In fact, BDNF exerts a key role in mediating and promoting EE-induced plastic changes and functional improvements in healthy and pathological conditions. This review is specifically aimed at providing an updated framework of the available evidence on the EE effects on brain and serum BDNF levels, by taking into account both changes in protein expression and regulation of gene expression. A further purpose of the present review is analyzing the potential of BDNF regulation in coping with neurodegenerative processes characterizing Alzheimer's disease (AD), given BDNF expression alterations are described in AD patients. Moreover, attention is also paid to EE effects on BDNF expression in other neurodegenerative disease. To investigate such a topic, evidence provided by experimental studies is considered. A deeper understanding of environmental ability in modulating BDNF expression in the brain may be fundamental in designing more tuned and effective applications of complex environmental stimulations as managing approaches to AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Ambiente , Plasticidad Neuronal/fisiología , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/sangre , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/fisiología , Modelos Animales de Enfermedad , Humanos , Enfermedades Neurodegenerativas/metabolismo
17.
Sci Rep ; 11(1): 8804, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888760

RESUMEN

Few investigations have analyzed the neuroanatomical substrate of empathic capacities in healthy subjects, and most of them have neglected the potential involvement of cerebellar structures. The main aim of the present study was to investigate the associations between bilateral cerebellar macro- and micro-structural measures and levels of cognitive and affective trait empathy (measured by Interpersonal Reactivity Index, IRI) in a sample of 70 healthy subjects of both sexes. We also estimated morphometric variations of cerebral Gray Matter structures, to ascertain whether the potential empathy-related peculiarities in cerebellar areas were accompanied by structural differences in other cerebral regions. At macro-structural level, the volumetric differences were analyzed by Voxel-Based Morphometry (VBM)- and Region of Interest (ROI)-based approaches, and at a micro-structural level, we analyzed Diffusion Tensor Imaging (DTI) data, focusing in particular on Mean Diffusivity and Fractional Anisotropy. Fantasy IRI-subscale was found to be positively associated with volumes in right cerebellar Crus 2 and pars triangularis of inferior frontal gyrus. The here described morphological variations of cerebellar Crus 2 and pars triangularis allow to extend the traditional cortico-centric view of cognitive empathy to the cerebellar regions and indicate that in empathizing with fictional characters the cerebellar and frontal areas are co-recruited.


Asunto(s)
Cerebelo/anatomía & histología , Corteza Cerebral/anatomía & histología , Cognición , Empatía , Cerebelo/fisiología , Corteza Cerebral/fisiología , Femenino , Voluntarios Sanos , Humanos , Masculino
18.
Prog Neurobiol ; 202: 102031, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33684513

RESUMEN

What happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing. Here, we deeply investigate the physiology of DA neurons in the VTA before, at the onset, and after onset of VTA neurodegeneration. We use the Tg2576 mouse model of AD, overexpressing a mutated form of the human APP, to identify molecular targets that can be manipulated pharmacologically. We show that in Tg2576 mice, DA neurons of the VTA at the onset of degeneration undergo slight but functionally relevant changes in their electrophysiological properties and cell morphology. Importantly, these changes are associated with accumulation of autophagosomes, suggestive of a dysfunctional autophagy, and with enhanced activation of c-Abl, a tyrosine kinase previously implicated in the pathogenesis of neurodegenerative diseases. Chronic treatment of Tg2576 mice with Nilotinib, a validated c-Abl inhibitor, reduces c-Abl phosphorylation, improves autophagy, reduces Aß levels and - more importantly - prevents degeneration as well as functional and morphological alterations in DA neurons of the VTA. Interestingly, the drug prevents the reduction of DA outflow to the hippocampus and ameliorates hippocampal-related cognitive functions. Our results strive to identify early pathological brain changes in AD, to provide a rational basis for new therapeutic interventions able to slow down the disease progression.


Asunto(s)
Enfermedad de Alzheimer , Neuronas Dopaminérgicas , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Dopamina , Ratones , Pirimidinas , Área Tegmental Ventral
19.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467450

RESUMEN

Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Células Piramidales/fisiología , Transcriptoma/genética , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/metabolismo , Animales , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/fisiología , Miedo/psicología , Masculino , Memoria/fisiología , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Optogenética/métodos , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología
20.
Alzheimers Res Ther ; 12(1): 150, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33198763

RESUMEN

BACKGROUND: In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer's disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. METHODS: Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. RESULTS: The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. CONCLUSIONS: The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Ácidos Grasos Omega-3 , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Colinérgicos , Hipocampo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...