Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(4): 5107-5120, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209480

RESUMEN

To realize laser-driven high-luminance white light sources, many reflective configurations have been studied, often resulting in a challenging optical design. In this paper it is demonstrated that the efficacy of a transmissive configuration can be significantly enhanced by using a sapphire half-ball lens as out-coupling optic. This lens not only improves efficiency, but also drastically increases the potential light output due to improved heat dissipation from the single-crystal phosphor converter. Both claims are substantiated with detailed experimental results and realistic opto-thermal simulations, showing a light output of 6550 lm and over 20000 lm, respectively and corresponding luminance of 67 MCd/m2 and 209 MCd/m2.

2.
Opt Express ; 28(8): 11175-11190, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403634

RESUMEN

In a waveguide-type display for augmented reality, the image is injected in the waveguide and extracted in front of the eye appearing superimposed on the real-world scene. An elegant and compact way of coupling these images in and out is by using blazed gratings, which can achieve high diffraction efficiencies. We report the design of blazed gratings for green light (λ = 543 nm) and a diffraction angle of 43°. The blazed gratings with a pitch of 508 nm and a fill factor of 0.66 are fabricated using grayscale electron beam lithography. We outline the subsequent replication in a polymer waveguide material with ultraviolet nanoimprint lithography and confirm a throughput efficiency of 17.4%. We finally show the in- and outcoupling of an image through two blazed gratings appearing sharp and non-distorted in the environment.

3.
Adv Sci (Weinh) ; 5(4): 1700731, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721420

RESUMEN

Microelectrode arrays (MEAs) have proved to be useful tools for characterizing electrically active cells such as cardiomyocytes and neurons. While there exist a number of integrated electronic chips for recording from small populations or even single cells, they rely primarily on the interface between the cells and 2D flat electrodes. Here, an approach that utilizes residual stress-based self-folding to create individually addressable multielectrode interfaces that wrap around the cell in 3D and function as an electrical shell-like recording device is described. These devices are optically transparent, allowing for simultaneous fluorescence imaging. Cell viability is maintained during and after electrode wrapping around the cel and chemicals can diffuse into and out of the self-folding devices. It is further shown that 3D spatiotemporal recordings are possible and that the action potentials recorded from cultured neonatal rat ventricular cardiomyocytes display significantly higher signal-to-noise ratios in comparison with signals recorded with planar extracellular electrodes. It is anticipated that this device can provide the foundation for the development of new-generation MEAs where dynamic electrode-cell interfacing and recording substitutes the traditional method using static electrodes.

4.
Sci Rep ; 7(1): 6492, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747672

RESUMEN

Optical beam deflectors based on the combination of cholesteric liquid crystals and polymer micro gratings are reported. Dual frequency cholesteric liquid crystal (DFCh-LC) is adopted to accelerate the switching from the homeotropic state back to the planar state. Polarization independent beam steering components are realized whose transmission versus the polarizing angle only varies 4.4% and 2.6% for the planar state and the homeotropic state, respectively. A response time of 451 ms is achieved for DFCh-LC-grating beam deflectors, which is fast compared to other nematic LC beam steerers with similar LC thickness.

5.
IEEE Trans Biomed Eng ; 62(2): 399-406, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25203979

RESUMEN

Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion. The paper describes the synthesis and characterization of a Pluronic/methacrylic acid sodium salt electro-responsive hydrogel. Application of an electrical bias decelerates the expansion of the hydrogel. An integrated delivery system was manufactured to deliver the hydrogel to the target location in the body. Ex vivo and in vivo experiments in the carotid artery of sheep were used to validate the concept. The hydrogel was able to completely occlude the blood vessel reducing the blood flow from 245 to 0 ml/min after implantation. Ex vivo experiments showed that the hydrogel was able to withstand physiological blood pressures of > 270 mm·Hg without dislodgement. The results showed that the electro-responsive hydrogel used in this paper can be used to create a long-term occlusion in a blood vessel without any apparent side effects. The delivery system developed is a promising device for the delivery of electro-responsive hydrogels.


Asunto(s)
Arterias Carótidas/fisiología , Embolización Terapéutica/instrumentación , Hemostáticos/administración & dosificación , Hidrogeles/administración & dosificación , Animales , Velocidad del Flujo Sanguíneo/fisiología , Catéteres , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Campos Electromagnéticos , Embolización Terapéutica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Hemostáticos/síntesis química , Hemostáticos/efectos de la radiación , Hidrogeles/química , Microelectrodos , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...